

Anatomy of an International Exchange Point: Distributed Network

Monitoring Using MonALISA and NetFlow
1

Xun Su1, Jose Fernandez2, Ernesto Rubi2, Iosif Legrand1, Heidi Alvarez2, Julio Ibarra2

1High Energy Physics Department, California Institute of Technology, Pasadena, CA.
91125
xsu@hep.caltech.edu, Iosif.Legrand@cern.ch

2CIARA, Florida International University, Miami, FL. 33199
josef@fiu.edu, ernesto@cs.fiu.edu, heidi@fiu.edu, Julio@fiu.edu

Abstract: In this paper we present a distributed network monitoring system, which
exploits MonALISA (Monitoring Agents in A Large Integrated Services Architecture), a
distributed web service delivery infrastructure designed to collect and process the
network monitoring information. We augment the capability of MonALISA with
FlowTools, the popular NetFlow data analysis toolset. We demonstrate how to integrate
MonALISA and FlowTools via an UDP-listening agent ApMon, and highlight a case
study of AMPATH, an international exchanging point located in Miami and serving a
number of South American National Research and Education Networks (NRENs). Our
experience showcases the elegant design philosophy of a scalable distributed service
deployment platform coupled with the open-source traffic analysis tools and its impact on
the daily operation of the production networks.

Keywords: NetFlow, MonALISA, FlowTools, Network monitoring.

1. INTRODUCTION

As the Internet expands both in its scope, reach and capacity, it becomes evident that
there is a strong need to develop a distributed network monitoring infrastructure that can
be scaled to support various network topology, traffic granularity and user applications.
NetFlow[1] is a widely deployed router-based traffic monitoring mechanism.
FlowTools[2] is an open-source NetFlow analysis toolset underlying the data gathering
and analysis infrastructure of our project. It is our main motivation to effectively use
NetFlow to gain crucial understanding of the traffic characteristics of the networks we
operate. In particular, we are interested in understanding how to exploit the key
advantages and avoid drawbacks of NetFlow-based traffic analysis by augmenting it with
a distributed service-deployment platform. Indeed the focus of our work is to integrate
MonALISA[3], a distributed monitoring system based on JINI/JAVA and WSDL/SOAP
technologies. MonALISA’s flexibility as a framework to gather, store and distribute
network data collected was crucial to the success of our investigation and it shall become
apparent throughout the course of this paper. The MonALISA framework provides a
distributed monitoring service that not only is closely integrated with our monitoring and

1
This work is supported by National Science Foundation’s Strategic Technologies for the Internet (STI): Research

Experience for Undergraduates Award No. 331112 and a Cisco Systems University Research Program (URP) grant.

data distribution philosophy but also acts as a dynamic service system. The goal is to
provide the monitoring information from large and distributed systems in a flexible and
self-describing way as part of a loosely coupled service architectural model to perform
effective resource utilization in large, heterogeneous distributed centers. A salient feature
of the MonALISA framework lies in its capability to integrate existing monitoring tools
and procedures to collect parameters related to computational nodes, storage devices and
network performance. A critical part to the research that we undertook is to integrate the
parsed NetFlow data into MonALISA, which would make available the information in a
distributed manner through mobile service agents. We will incorporate real-time as well
as historical information in our system to improve the understanding of the traffic
statistics data from the networks being monitored.

A significant part of the paper is dedicated to the use of our system to analyze network
traffic behavior across a real-world production network, AMPATH. The AMericasPATH
(AMPATH) network is an FIU project sponsored in part by the US National Science
Foundation CISE directorate, in collaboration with Global Crossing and other
telecommunications product and service providers. Using Global Crossing’s terrestrial
and submarine optical-fiber networks, AMPATH is interconnecting the research and
education networks in South and Central America and the Caribbean to US and non-US
research and education networks via Internet2’s Abilene network. The purpose of the
AMPATH project is to allow participating countries to contribute to the research and
development of applications for the advancement of Internet technologies. The mission
of AMPATH is to serve as the pathway for Research and Education networking in the
Americas and to the world and to be the International Exchange Point for Latin America
and the Caribbean research and education networks. Additionally AMPATH fosters
collaboration for educational outreach to underserved populations both in the US and
abroad. The AMPATH pathway serves as the bridge between Central and South
American National Research Networks (NRENs) and the world’s research and education
networks. With the multiplicity of complex networked systems and educational activities
served by AMPATH’s wide-ranging infrastructure a strong demand for high availability
and engineering collaboration arises, which is met through the use of various monitoring
agents to provide a strong factual foundation to troubleshooting. Likewise, deciphering
the everyday activities of our peers is achieved with a distributed approach to data
gathering and dissemination.

2. ANATOMY OF AN INTERNATIONAL EXCHANGE POINT

Figure 1 illustrates AMPATH’s current architecture. We will use simple NREN names to
identify our international peers.2 It is this network that served as the backdrop for our
study. Two core routers exist: a Cisco GSR 12012 as well as a Juniper M10, both routers
have NetFlow accounting enabled and are designed to export this data to a collection
workstation.

2 For more detailed information please visit http://mrtg.ampath.net.

Figure 1: AMPATH schematic architecture.

3. NETFLOW AND FLOWTOOLS

NetFlow was originally developed as a switching path and today it is primarily used for
network accounting. Flow records are generated and exported by a router. Each flow
record contains information about all packets that are categorized to have the same
combination of the following IP header fields:

• Source IP address
• Destination IP address
• Source port
• Destination port
• Layer 3 protocol type
• TOS byte
• Input logical interface

NetFlow records only unidirectional traffic in-bound to any interface on the router. Note
however, even though this traffic is unidirectional NetFlow accounts for all traffic going
in and out of the router by recording both transit traffic and traffic destined for the router.
By storing only the router’s flow-level information and neglecting payload it becomes
feasible to summarize and “sketch” large amount of data traffic.

A key technical note is the sampling mode at which the router is running. In the GSR’s
case a 1-100 sampling rate is specified. This means that for every 100 packets processed
by the forwarding engine or route processor there will be one packet extracted and
reported to the NetFlow process running at the router. This is the lowest allowed
sampling rate on our GSR running NetFlow v5 and clearly we can see that this causes

limitations on the analysis of network data. It is not uncommon to have short host-to-host
sessions where the overall transmission does not exceed 100 packets. It is beyond the
scope of this paper to discuss NetFlow sampling algorithms but based on our experience
it is likely that if the transmission is 100 packets or less NetFlow will not account for it.
This introduces a margin of error to any analysis of data flows but especially to those
UDP flows transmitted over our core. With their inherent error correction mechanisms
TCP flows are less prone to being ignored by the collection process.

FlowTools is a collection of programs and libraries used to collect and process NetFlow
data. These tools allow users to process stored flow data from a series of command line
interfaces. Commands like flow-filter and flow-sort allow the user to filter and sort
NetFlow data by IP address, port, AS number and any other parameter present in that
data collected. The data is presented on the command line in a table format. However
these tools do not provide a dynamic way of dynamically monitoring flow data. Through
the use of MonALISA we have used NetFlow data collected and processed by Flow
Tools to create a graphical interface by which to view certain characteristics of the
AMPATH network in a near-real time fashion. For our analysis we implemented flow-
tools version 0.66 on a dual Xeon 2.66 GHz system with a copper Gigabit Ethernet
network connection to FIU’s campus network. The operating system of choice was
Fedora Core 2.

Having discussed the data gathering techniques in the following we focus on the data
dissemination mechanism. For the rationales that we detail in the next section
MonALISA is our platform of choice for this purpose.

4. MONALISA AND APMON

MonALISA (Monitoring Agents in A Large Integrated Services Architecture) is a
distributed services architecture to collect, process and act upon real-time monitoring
information. While its initial target field of application is networks and Grid systems used
by the global high energy and nuclear physics collaborations, MonALISA is broadly
applicable to many fields of data intensive science, and to the monitoring and
management of major research and education networks. MonALISA is based on a
scalable dynamic distributed services Architecture, and is implemented in Java using
JINI[21] and WSDL[22] technologies. The scalability of the system derives from the use
of a multi-threaded engine to host a variety of loosely coupled self-describing dynamic
services, and the ability of each service to register itself and then to be discovered and
used by other services or clients that require such information. The framework integrates
many existing monitoring tools and procedures to collect parameters describing
computational nodes, applications and network performance. Specialized mobile agents
are used in the MonALISA framework to perform global optimization tasks or help
improve the operation of large distributed system by performing supervising tasks for
different applications. MonALISA is currently running around the clock monitoring
several Grids and distributed applications on approximately 150 sites.

The core of the MonALISA monitoring service is based on a modular system design used
to perform the data collection tasks in parallel, independently. The modules used for
collecting different sets of information, or interfacing with other monitoring tools, are

dynamically loaded and executed in independent threads. In order to reduce the load on
systems running MonALISA, a dynamic pool of threads is created once, and the threads
are then reused when a task assigned to a thread is completed. This allows one to run
concurrently and independently a large number of monitoring modules, and to
dynamically adapt to the load and the response time of the components in the system. If a
monitoring task fails or hangs due to I/O errors, the other tasks are not delayed or
disrupted, since they are executing in other, independent threads. A dedicated control
thread is used to properly stop the threads in case of I/O errors, and to reschedule those
tasks that have not been successfully completed. A priority queue is used for the tasks
that need to be performed periodically.

A schematic view of this mechanism of collecting data is shown in Figure 2. This
approach makes it relatively easy to monitor a large number of heterogeneous nodes with
different response times, and at the same time to handle monitored units that are not
responding without affecting other measurements. The clients, other services or agents
can get any real-time or historical data by using a predicate mechanism for requesting or
subscribing to selected measured values. These predicates are based on regular
expressions to match the attribute description of the measured values a client is interested
in. They may also be used to impose additional conditions or constraints for selecting the
values. In case of requests for historical data, the predicates are used to generate SQL
queries to the local database. The subscription requests create a dedicated thread, to serve
each client. This thread performs a matching test for all the predicates submitted by a
client with the measured values in the data flow. The same thread is responsible to send
the selected results back to the client as compressed serialized objects. Having an
independent thread per client allows sending the information they need, in a fast and
reliable way, and it is not affected by communication errors that may be occurring at
other clients. In case of communication problems these threads will try to reestablish the
connection or to clean up the subscriptions for a client or a service that is no longer
active.

Farm

Monitor

Dynamic

Thread Pool

Trap Agent

Trap

Listener

SNMP

Get / trap

or

Specific

protocols
Dynamic loading of

signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Farm

Monitor

Dynamic

Thread Pool

Trap Agent

Trap

Listener

SNMP

Get / trap

or

Specific

protocols
Dynamic loading of

signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Figure 2: A schematic view of the MonALISA data collection mechanism based on a
multi-threaded engine.

Figure 3: The MonALISA monitoring service for Abilene, shown at a time we injected
more than 8 Gigabits/sec.

Figure 3 is a snapshot of the MonALISA monitoring network for Abilene network of the
Internet2. It shows all the active nodes running MonALISA services for this particular
“farm”, discovered automatically by a graphical MonALISA client. The client can
display the real time global views and connectivity, as well as the usage and load of the
farms. In this particular instance we captured a highly intensive data transfer event on
June 19th, 2004 where a group of 12 disk servers in CERN concurrently sent TCP traffic
via LHCNet and Abilene to their destinations in Caltech. Note that in this case
MonALISA reported a throughput reaching 8.4 Gbps on the Abilene links from Chicago

 Kansas City Denver Sunnyvale Los Angeles.

A salient feature of the MonALISA design is its extensibility. It allows user-defined
monitoring modules, specific to user-specified system and network information, to be
easily implemented and integrated in the MonALISA framework. This facilitates the
work reported in this paper, as well as our ongoing project to integrate NLANR PMA[5]
real-time packet trace analysis and MonALISA. From a systems point of view,
MonALISA provides scalable architectural support for collecting, visualizing and
responding to the operating conditions of large-scale distributed systems, and it is
especially suited for monitoring and controlling large computing systems and networks
used in Grid applications.

ApMon[4] is an Application Programming Interface that facilitates user-specific
applications to interact with the MonALISA services. ApMon allows any application to
send parameterized monitoring information to MonALISA. The data can be sent as UDP
packets to multiple hosts running the MonALISA service. Through the use of ApMon
MonALISA services can receive parameterized data in (name, type, value) tuples. When
transmitting a data point to MonALISA the application specifies the name of the
parameter about to be sent, the type of the parameter (string, object, integer, double) and
the actual value of the parameter. The ApMon module on the MonALISA service will
then receive this data and create any needed fields on its database for new parameters or
populate existing fields if a particular parameter name already exists. The resulting data
stored in MonALISA is a set of parameters and the values of those parameters over time.

MonALISA then provides an interface by which to view one or multiple parameters in a
real-time or historical graph.

5. INTEGRATING MONALISA AND FLOWTOOLS VIA APMON

NetFlow allows for the monitoring of a large number of parameters. For this project we
decided to limit the parameters monitor to the following:

• UDP/TCP port destination/source traffic
• IP destination/source traffic
• IP protocol traffic
• IP Next Hop traffic
• AS destination/source traffic
• Prefix destination/source traffic

For most of these parameters we will be monitoring that total traffic in octets over a
period of time. The initial period of time was 5 minutes. In the flow-capture startup
script above the parameter –n288 indicates that we want flow-capture to generate 288
files per day which results in a new file generated very 5 minutes.

Our application will use the most recent file to retrieve the desired parameters. This will
result in parameterized NetFlow data being retrieved by our application reflecting 5-
minute averages for each of the monitored parameters. Hence the value of each
parameter will represent the total number of octets associated with that particular
parameter over a 5-minute period. We will use flow-stat to collect all of the parameters
specified above. Below is a sample output using flow-stat. As we can see for this
particular 5-minute interval the HTTP port (80) was most heavily used at 11274635
octets roughly 10.75 MB.

$ flow-cat ft-v05.2005-01-19.135207-0500 | flow-stat -f 5 -S 2
--- ---- ---- Report Information --- --- ---

Fields: Total
Symbols: Disabled
Sorting: Descending Field 2
Name: UDP/TCP destination port

Args: flow-stat -f 5 -S 2

port flows octets packets

80 42816 11274635 82997
25 2877 3770113 7623
2010 28 2543195 1747
4662 2095 2290946 3770
2009 28 2091493 1413

The application will parse the flow-stat report and generate a (name, value) pair which
will be sent to MonALISA via ApMon. This name will be one of the following: (1) a
port number or name; (2) an IP address; (3) a protocol number or name; (4) an AS
number; (5) a Prefix.

6. CASE STUDY– MONITORING PEER TRAFFIC

In this section we demonstrate the use of our monitoring system in practice. We choose
to examine a peer, the NWS Internet2 Gigabit Ethernet link that carries all HPC traffic to
and from New World Symphony (NWS), a post-doctorate institution at Miami Beach that
has AMPATH be its upstream provider of Internet2 traffic as well as commodity internet.
Once MonALISA starts the screen presented in Figure 4 is a global view of all running
sites / farms.

Figure 4 - MonALISA startup screen with 'test' group.

The MonALISA service that pertains to our particular study is titled I2Monitor. Choosing
the I2Monitor farm, we are then presented with the AMPATH specific data we have
chosen to integrate into our analysis, as shown in Figure 5. Two core routers (a Cisco
GSR and a Juniper M10) are monitored. As an example we will present the data for the
Juniper – NWS Internet2 connection. In Figure 6 by choosing Egress Source AS we
view the current set of stored AS numbers belonging to flows leaving our Juniper router
and destined to the New World Symphony network. With the “Parameters”
corresponding to the AS numbers traversing our router destined to NWS we have a clear
top-level view of flows of the network, and we can delve deeper into this data by
showing a real-time plot or history plot of the AS data gathered. This is given in Figure 7.
In Figure 8 we show the utilization of IPv6. We note that IPv6 data has not been a
significant load on AMPATH during the time period specified.

7. DISCUSSIONS AND FUTURE WORKS

NetFlow data contains a rich amount of network information with a multitude of
applications. Through the use of the distributed monitoring environment provided by

MonALISA and the reporting flexibility embedded in the FlowTools API it is possible to
encapsulate and summary this data in visually friendly manner. In doing saw were able to
create dynamic and real time views of the AMPATH Internet 2 network traffic and its
behaviors. Direct application of this technology could be used to further understand
network traffic behavior and trends in complex research networks.

The traffic views generated by MonALISA and the NetFlow application focused on the
“top talking” flows. That is MonALISA only received the top x talking flows for a
particular period of time. We saw that this technique produced a seemingly random setup
of results. Further study should be made to understand this trend and determine its
inherent properties.

One further technology that we intended to explore was that of the National Laboratory
for Applied Network Research (NLANR) PMA (Passive Monitoring Agent) [5]. There
are key differences between PMA data and NetFlow data worthy of serious research
effort. With our results we hope to provide a stable platform from which networks of
varying degrees can be closely monitored, their traffic patterns clearly identified and the
appropriate decisions taken to rectify issues which negatively impact performance or
augment those which have a positive impact on the delivery of service to an end user.

REFERENCES:
1. NetFlow Services Solution Guide, Cisco Systems Inc.
2. FlowTools: http://www.splintered.net/sw/flow-tools/.
3. MonALISA: http://monalisa.caltech.edu.
4. ApMon: http://monalisa.caltech.edu.
5. PMA: http://moat.nlanr.net

Figure 5– AMPATH Farm specific data

Figure 6 - ASNs traversing AMPATH towards NWS

Figure 7 - ASN traffic destined to NWS

Figure 8 – Two-hour snapshot of IPv6 data traversing AMPATH

