
Task Decomposition for Adaptive Data Staging in
Workflows for Distributed Environments

Onyeka Ezenwoye1, Balaji Viswanathan4, S. Masoud Sadjadi2, Liana Fong3, Gargi Dasgupta4, and Selim Kalayci2
1 South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu

2 Florida International University, Miami, FL, USA, sadjadi,skala001@cs.fiu.edu
3 IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com

4 IBM India Research Lab, New Delhi, India, bviswana,gdasgupt@in.ibm.com

Abstract—Scientific workflows are often composed by
scientists that are not particularly familiar with perfor-
mance and fault-tolerance issues of the underlying layer.
The inherent nature of the infrastructure and environ-
ment for scientific workflow applications means that the
movement of data comes with reliability challenges. Im-
proving the reliablility scientific workflows in distributed
environments, calls for the decoupling of data staging
and computation activities, and each aspect needs to be
addressed separately

In this paper, we present an approach to managing
scientific workflows that specifically provides constructs for
reliable data staging. In our framework, data staging tasks
are automatically separated from computation tasks in the
definition of the workflow. High-level policies can be pro-
vided that allow for dynamic adaptation of the workflow
to occur. Our approach permits the separate specification
of the functional and non-functional requirements of the
application and is dynamic enough to allow for the
alteration of the workflow at runtime for optimization.

Keywords: Data Staging, Scientific Workflow, Dis-
tributed Systems.

I. INTRODUCTION

In a distributed computing system, compo-
nents may reside in different physical locations.
These components are often encapsulated as self-
containted and internet-accessible software compo-
nents or applications. Distributed applications are
exposed as reusable components that can be dynam-
ically discovered and integrated to create new appli-
cations. These new applications form aggregate (or
composite) services. In this composite model, the
composite application is an aggregation of tasks that
are performed/executed by the integrated distributed
applications, as illustrated in Figure 1.

Task

Workflow

TaskTask

Fig. 1. Workflows aggregate tasks the get executed on the distributed
computers

In the research community, these distributed ap-
plications and the ability aggregate them is allowing
scientist to create complex scientific applications.
To facilitate this integration are computing infras-
tructures such as the Grid [6] that allow for the
harnessing of resources available on disparate dis-
tributed computing environments to create a parallel
infrastructure that allows for applications to be pro-
cessed in a distributed manner. These applications,
which are geared towards scientific discovery tend
to be compute and data intensive, requiring large
amounts of data to be moved around the system.
Since moving the application close to the data is not
always practical due to insufficient computational
resources at the storage site [8], data needs to be
moved to the applications that need them and in
some cases cleanup operations need to occur after
application execution. The inherent nature of the in-
frastructure and environment for these applications
means that the migration of data comes with certain
challenges. The successful execution of applications
is dependent of the availability of necessary data.
For instance, workflow mapping techniques may
produce workflows that are unable to execute due to
the lack of the disk space necessary for the success-



ful execution [10], requiring that data movement be
scheduled and monitored. In fact, the mangement
of data is essential through the entire lifecycle of
the workflow from creation to execution, and result
management [4]

Scientific workflows are often composed by sci-
entists and as such are not particularly tuned for
performance and fault-tolerance [3] This is becaue
workflow languages permit the abstraction of lan-
guage semantics at a level that is easy for domain
specialist to use, thus focus is often placed on the
functional aspects of the workflow. Also, since the
eventual execution resources are not known during
composition, optimizing the runtime of the overall
workflow becomes a big issue [3] Allthough data
is a key component in scientific workflow, a lot of
emphasis is not placed on providing fault tolerance
for tasks related to their data requirements. Data
staging tasks are often embedded in computation-
related tasks and relaibility efforts are then focused
on the computation tasks even though data access
presents the main bottleneck for data-intensive ap-
plications [8]

Improving the reliablility of data placement in
distributed environments, calls for the decoupling
of data movement and computation activities, each
aspect needs to be addressed separately [9] Infras-
tructure for distributed scientific applications needs
to consider data movement as part of the end-to-
end performance of the system and care must be
taken to make sure they complete successfully and
without any need for human intervention [8]

In this paper, we present an approach to managing
scientific workflows that specifically provides con-
structs for reliable data staging. In our framework,
data staging tasks are automatically separated from
computational tasks in the definition of the work-
flow. High-level policies are provided that allow for
dynamic adaptation to occur. Recovery actions are
applied separately for either data or computation-
related tasks, for failures that could arise from
software, network or storage system. Our approach
permits the separate specification of the functional
and non-functional requirements of the application
and is dynamic enough to allow for the alteration
of the workflow at runtime for optimization.

The rest of this paper is is structured as fol-
lows. In section II presents the architecture of our

adaptive workflow manager that decomposed data
staging and computation. Section III contains some
related work. Finally, some concluding remarks are
provided in Section IV.

II. WORKFLOWS IN GRID ENVIRONMENTS

In this section we present a brief overview of the
overall architecture of our workflow management
system for grid environments. As part of the Latin
American Grid (LA Grid) [2], we have developed
a distributed architecture that is comprised of two
main middleware components: the workflow man-
ager and the meta-scheduler. The LA Grid model is
an end-to-end, layered architecture that is comprised
of five main layers (see Figure 2): the Application
Layer, which models the business logic of the a
complex application in a workflow; the Workflow
Management Layer, which enacts the business logic
of the workflow and is responsible for maintain-
ing concurrency and sequencing among tasks (or
jobs) in the workflow; the Meta-Scheduling Layer,
which is responsible for resource selection and job
execution control; the Local Resource Management
Layer, which is responsible for scheduling and exe-
cuting individual jobs on the local resources; and the
Resource Layer, which is comprised of the actual
computing, storage, and networking resources.

WorkflowApplication Layer

Workflow
f

Meta-

Scheduler

Workflow

Management 

Layer

Meta-Scheduling 

Layer

Workflow 

Engine

Local 

Scheduler

Local 

Scheduler

Local Resource 

Management 

Layer

Resource Layer
L l L l

Resource 

Policies

Resource Layer
Local

Resources

Local

Resources

Fig. 2. A layered architecture for workflow execution in grid
environments

To express the workflows themselves, we chose
the Web Services Business Process Execution Lan-
guage (BPEL) [5], which has emerged as the stan-
dard workflow language for orchestrating service-



based applications. Several production-level soft-
ware provide core BPEL engines. These engines are
virtual machines that interpret and execute BPEL
grammar. The grammar models the business logic of
the workflow as a directed-graph, where the nodes
represent tasks and the edges represent inter-task
dependencies, data flow or flow control.

Currently, the BPEL specification does not con-
tain the necessary semantics or support for defining
jobs. Grid jobs require the richness and flexibility
for specifying varied resource requirements and
system environments. The Open Grid Forum job
scheduling working group recommends the use of
Job Submission Definition Language (JSDL) [1], for
capturing a job’s resource and environment require-
ments as well as data dependencies. In absence of
unified modeling support, BPEL and JSDL are used
to provide the combined modeling semantics for the
workflow. This way individual workflow tasks are
represented as JSDL jobs, embedded with BPEL
constructs. This provides the necessary environment
based on standardized technologies.

A. Data Staging

Many Grid jobs require input data, and in the
absence of a shared file system, these datasets need
to be staged in at the site of execution. Usually
the data stag-in needs to be completed before the
job can begin execution. In wokflows, the data
requirement could be an input to the system or
produced by the execution of a preceding job. In
the latter case, a data-dependency is created in the
flow between the producer and the consumer jobs
of the data. Thus a typical data staging pattern in
worklows comprises of a data stage-in from either
producer jobs or from defined inputs, followed by a
job submission pattern. In some cases, a data stage-
out is specified to perform data cleanup operations
after execution. There may be several such data
staging activities, which could occur sequentially or
in parallel.

Once the data staging of all dependencies are
satisfied, a job can be submitted for execution.
Typically, data staging activities are embedded with
the specification of the the computation task in the
JSDL document, as illustrated in Figure 3 This com-
plex JSDL is then submitted as one job submission
request by the workflow. Within this framework, it

becomes difficult to isolate the source of failures.
For instance, faults generated by data stage-in can
get propagated to job execution.

Task

Data stage-in

J b ti

W kfl

Job

submission

Job

submission Data stage-out

Job execution

Workflow

Fig. 3. A job submission task with embedded data staging activities.

B. Decoupling Data Staging

In this section, we present our approach to provid-
ing an adaptive workflow execution. Our approche
takes into consideration the need provide adaptive
data staging as part of the end-to-end performance
of the workflow, by automatically decoupling the
specification of data staging and computation. Not
decoupling data staging and computation affects
capability of system to provide fault-tolerance and
adapt to environment and user prefrences. Data
staging jobs and computational jobs need to be
differentiated from each other within the system.
Figure 4 illustrates the architecture of our adaptive
workflow manager.

Automatic

Adapter

Workflow

Engine

Workflow

Composer

Workflow

Patterns

Workflow

BPEL+JSDL

Adapted Workflow

BPEL+JSDL

Recovery

Policies

Transparent

Proxy

Resubmit Migrate

Pattern & Policy Editor

Modeling Time Deployment Time Run Time

Alt. meta

scheduler

meta

scheduler

Legend

Data & Control Flow

Transparent Data & Control Flow

Knowledge

Base

ode g e ep oy e e u e

Fig. 4. The architecture of our adaptive workflow manager

In the left side of Figure 4, a domain expert
will use the Workflow Composer to specify the
business logic of the application using BPEL+JSDL.
The domain expert should only be concerned about
the business logic of the application and not about
handling faults and exceptions. The job descriptions



(in JSDL) are treated as XML complex types, which
in turn are used as the parameters to some Invoke
constructs in BPEL. It is within this JSDL defini-
tions that data staging and computation tasks are
encapsulated. During deployment time, the resulting
workflow is passed to the Automatic Adapter, which
automatically generates a functionally equivalent
workflow. It is during this adaptation phase that
the complex JSDL definitions that data staging
and computation tasks are decomposed in primitive
JSDL definition. Separate definitions and invoca-
tions are defined in the workflow for data stage-
in, computation, and data stage-out. The invocation
messages are extended with context information so
that correlations can be made between the decom-
posed tasks. The context information is also needed
for the Proxy to monitor the interaction between the
workflow manager and the meta-schedulers.

The automatic adapter has an algorithm that
identifies the known workflow patterns (e.g. job
submission and data staging) within the workflow.
The most updated workflow patterns are stored in
the Knowledge Base. New workflow patterns can
be added to the knowledge base using the Pattern
and Policy Editor. The generated workflow, called
adapted workflow, would not include constructs to
handle faults at run time. Instead workflow behavior
is modified at run time through the Transparent
Proxy. At run time, the workflow will be executed
by the Workflow Engine. The workflow engine can
be any standard BPEL engine, as we did not extend
BPEL in our work. During the automatic adaptation
of the workflow, all the calls originally targeted for
the local Meta-scheduler are redirected to the Trans-
parent Proxy [7]. Therefore, the Transparent Proxy
will intercept all the calls to the Meta-scheduler.

The Proxy will appear as a Meta-scheduler to
the workflow process, and as a workflow process
to the Meta-scheduler; hence, the name transparent.
Its main responsibility includes submission of the
jobs to the local Meta-scheduler and notifying the
workflow process of the job status when it receives
job status updates from the Meta-scheduler. In ad-
dition, it implements a pattern-matching algorithm
that monitors the behavior of the intercepted calls
and provides fault-tolerant behavior when faults
occur. The algorithm is based on the Recovery
Policies, the context information embedded in the

adapted workflow, the Workflow Patterns, and their
corresponding Fault-Tolerant Patterns. For example,
following the recovery policies governing the cur-
rent faulty situation, the Transparent Proxy may
resubmit the job (data staging or computation) to
the same Meta-scheduler or migrate it to another
Meta-scheduler.

: Workflow : TransparentProxy : Meta-Scheduler

1: data stage-in + context 

2: wait

3: data stage-in 

4: get status

5: resume

6 j b ti t t6: job execution + context

7: wait

8: job execution

9: get status

10: resume10: resume

Fig. 5. Sequence diagram showing the interaction between the
workflow engine, transparent proxy and meta-scheduler

Figure 5 shows the interaction between the in-
teraction between the workflow engine, transparent
proxy and meta-scheduler. Some messages have
been simplified or removed for the purpose of
brevity. As depicted in the diagram, data stage-in
and job execution submission are decomposed and
separated (data stage-out is not shown). Data Stage-
in jobs are submitted first to the proxy with some
context information that it needs to correlate related
job execution and data stage-out submissions. The
workflow is made to wait while the proxy attempts
to execute the data stage-in task. The proxy will ap-
ply recovery actions (such as retry or migrate) based
on specified high-level policies. Upon successful
data staging, the workflow is allowed to proceed
and further tasks can be submitted.

III. RELATED WORK

The work by Chervenak [3] is concerned with
data placement policies that distribute data in ways
that are advantageous for application execution, for
instance, by placing data sets so that they may be
staged into or out of computations efficiently or
by replicating them for improved performance and



reliability. Their work centers on prestaging data
using the Data Replication Service versus using
the native data stage-in mechanisms of the Pegasus
workflow management system. A policy-driven data
placement service is responsible for replicating and
distributing data items in conformance with policies
or preferences. This work differs from our because
it applies data management techniques at the local
resource management layer (see Figure 4), while our
work focuses on the workflow management layer.

Kosar [8] presents a data placement subsystem
that allows for data for distributed computing sys-
tems to be queued, scheduled, monitored, managed,
and checkpointed. Their framework includes a spe-
cialized scheduler for data placement, a high level
planner aware of data placement jobs, a resource
broker/policy enforcer and optimization tools. Data
placement jobs are represented in a different way
than computational jobs in the job specification
language so that the high level planners can dif-
ferentiate these two classes of jobs. The system
can perform reliable data placement, and recover
from failures without any human intervention. This
work does is not dynamic since it requires that the
workflow definition be modified and redeployed in
order for any adaptation to occur. In comparison, our
approach is automatic and includes context infor-
mation for better fault tolerance. Also by focusing
on the workflow management layer, we assume no
control over data and job scheduling.

Ranganathan’s [9] framework allows for data
movement operations may be tightly bound to job
scheduling decisions or, performed by a decoupled
, asynchronous process on the basis of observed
data access patterns and load. A scheduling frame-
work within which a wide variety of scheduling
algorithms can be used. They assume a multi-user
and multi-site model. At each site, there are 3
components: an External scheduler (ES) that dert-
mines where to send jobs submitted to that site; a
local scheduler (LS) that determines the order in
which jobs are executed at that particular site; and
a Dataset scheduler (DS) that detemines when to
replicate data/and or delete local files. This work
differs from ours because it considers data man-
agement issues at the local resource management
layer, while our work focuses on the workflow
management layer.

Singh [10] focuses on optimizing disk usage
and scheduling large-scale scientific workflows onto
distributed resources. Their approach is minimize
the amount of space a workflow requires during
execution by removing data files at runtime when
they are no longer needed. To achieve this, work-
flows are restructured to reduce the overall data
footprint of the workflow. Their algorithms adds a
cleanup job (data stage-out) for a data file when
that file is no longer required by other tasks in the
workflow. Similar to our approach, their workflow
adaptation algorithm is applied after the executable
workflow has been created but before the workflow
is executed. However, the issue of fault-tolerance is
not addressed and no data cleanup if a compute task
fails.

IV. CONCLUSION

In this paper, we present an approach to managing
scientific workflows that specifically provides con-
structs for reliable data staging. In our framework,
data staging tasks are automatically separated from
computational tasks in the definition of the work-
flow. High-level policies can be provided that allow
for dynamic adaptation of the workflow to occur.
Recovery actions are applied separately for either
data or computation-related tasks, for failures that
could arise from software, network or storage sys-
tem. Our approach permits the separate specification
of the functional and non-functional requirements
of the application and is dynamic enough to allow
for the alteration of the workflow at runtime for
optimization.

Acknowledgement: This work was supported in
part by IBM, the National Science Founda-
tion (grants OISE-0730065, OCI-0636031, HRD-
0833093, and IIP-0829576). Any opinions, findings
and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect those of the NSF and IBM.

REFERENCES

[1] A. Anjomshoaa, A. Anjomshoaa, M. Drescher, D. Fellows,
A. Ly, S. McGough, D. Pulsipher, and A. Savva. Job Submission
Description Language(JSDL) Version 1.0, November 2005.



[2] R. Badia, G. Dasgupta, O. Ezenwoye, L. Fong, H. Ho, Y. Liu,
S. Luis, A. Praino, J.-P. Prost, A. Radwan, S. M. Sadjadi,
S. Shivaji, B. Viswanathan, P. Welsh, and A. Younis. Innovative
grid technologies applied to bioinformatics and hurricane mit-
igation. In High Performance Computing and Grids in Action.
IOC Press.

[3] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler,
S. Bharathi, G. Mehta, and K. Vahi. Data placement for
scientific applications in distributed environments. IEEE/ACM
International Workshop on Grid Computing, 0:267–274, 2007.

[4] E. Deelman and A. Chervenak. Data management challenges
of data-intensive scientific workflows. In Proceedings of the
Eighth IEEE International Symposium on Cluster Computing
and the Grid, pages 687–692, Washington, DC, USA, 2008.
IEEE Computer Society.

[5] O. Ezenwoye and S. M. Sadjadi. Composing aggregate web
services in BPEL. In Proceedings of The 44th ACM Southeast
Conference, Melbourne, Florida, March 2006.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. Lecture Notes in
Computer Science, 2150, 2001.

[7] S. Kalayci, O. Ezenwoye, B. Viswanathan, G. Dasgupta, S. M.
Sadjadi, and L. Fong. Design and implementation of a fault
tolerant job flow manager using job flow patterns and recovery
policies. In Proceedings of the 6th International Conference on
Service Oriented Computing (ICSOC’08), volume 5364/2008,
pages 54–69, Sydney, Australia, December 2008. Springer
Berlin / Heidelberg.

[8] T. Kosar and M. Livny. A framework for reliable and efficient
data placement in distributed computing systems. Journal of
Parallel and Distributed Computing, 65(10):1146–1157, 2005.

[9] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data-intensive applications. volume 0,
page 352, Los Alamitos, CA, USA, 2002. IEEE Computer
Society.

[10] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman,
H. Zhao, R. Sakellariou, K. Blackburn, D. Brown, S. Fairhurst,
D. Meyers, B. Berriman, J. Good, and D. Katz. Optimizing
workflow data footprint. Scientific Programming, 15(4):249–
268, 2007.


