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Abstract Dengue is considered one of the most important vector-borne infection,
affecting almost half of the world population with 50 to 100 million cases every year.
In this paper, we present one of the simplest models that can encapsulate all the im-
portant variables related to vector control of dengue fever. The model considers the
human population, the adult mosquito population and the population of immature
stages, which includes eggs, larvae and pupae. The model also considers the vertical
transmission of dengue in the mosquitoes and the seasonal variation in the mosquito
population. From this basic model describing the dynamics of dengue infection, we
deduce thresholds for avoiding the introduction of the disease and for the elimination
of the disease. In particular, we deduce a Basic Reproduction Number for dengue
that includes parameters related to the immature stages of the mosquito. By neglect-
ing seasonal variation, we calculate the equilibrium values of the model’s variables.
We also present a sensitivity analysis of the impact of four vector-control strategies
on the Basic Reproduction Number, on the Force of Infection and on the human
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prevalence of dengue. Each of the strategies was studied separately from the oth-
ers. The analysis presented allows us to conclude that of the available vector control
strategies, adulticide application is the most effective, followed by the reduction of
the exposure to mosquito bites, locating and destroying breeding places and, finally,
larvicides. Current vector-control methods are concentrated on mechanical destruc-
tion of mosquitoes’ breeding places. Our results suggest that reducing the contact
between vector and hosts (biting rates) is as efficient as the logistically difficult but
very efficient adult mosquito’s control.

Keywords Dengue · Basic reproduction number · Force of infection · Sensitivity
analysis · Vector control

1 Introduction

The global expansion of dengue fever is a matter of great concern to public health au-
thorities around the world (Guy et al. 2011). In terms of the population at risk, dengue
is considered the most important vector-borne disease worldwide (Gubler 2002;
WHO 2012). It is estimated that approximately 3.6 billion people, one-half of the
world’s population, live in parts of the world affected by dengue (Gubler 2002;
Beatty et al. 2008; WHO 2009), and 120 million people are expected to travel to
dengue-affected areas every year (UNWTO 2011). Between 50 and 100 million peo-
ple are infected each year (Suaya et al. 2009), and the World Health Organization
states that the number is rising due to human population growth and the increased
spread of vector mosquitoes due to climate change (Khasnis and Nettlelman 2005).
Recent studies suggest that the figures are much higher (Wilder-Smith et al. 2012),
with as many as 230 million infections, tens of millions of cases of dengue fever (DF)
and millions of cases of dengue hemorrhagic fever DHF (Beatty et al. 2008, 2011;
Gubler 2011). The number of disability-adjusted life years (DALYs) worldwide is
estimated to range between 528 and 621 per million population (Wilder-Smith et al.
2010, 2012), and the total cost of dengue cases in the affected areas of the world may
be approximately 2 billion dollars annually (Suaya et al. 2009).

Dengue viruses are transmitted by mosquitoes of the genus Aedes, subgenus Ste-
gomyia (Wilder-Smith et al. 2012). The principal vector, Aedes Stegomyia aegypti,
is now well established in much of the tropical and subtropical world, particularly
in urban areas. It is a domestic species, highly susceptible to dengue virus infection,
feeding preferentially on human blood during the daytime and often taking multiple
blood meals during a single gonotrophic cycle (Wilder-Smith et al. 2010). It typically
breeds in clean stagnant water in artificial containers and is, therefore, well adapted
to urban life. A second species, Aedes Stegoymyia albopictus, is generally considered
less effective as an epidemic vector because, unlike A. aegypti, it feeds on many ani-
mals other than humans and is less strongly associated with the domestic environment
(Lambrechts et al. 2010).

Several reasons have been proposed for the dramatic global emergence of dengue
as a major public health problem. Major global demographic changes have oc-
curred, the most important of which have been uncontrolled urbanization and con-
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current population growth. The public health infrastructure of many affected coun-
tries has deteriorated. Increases in international travel provide an efficient mecha-
nism for the human transport of dengue viruses between urban centers, resulting in
the frequent exchange of dengue viruses. Climatic changes influence the mosquito’s
survival and proliferation (Massad et al. 2011). Finally, effective mosquito con-
trol is virtually nonexistent in many dengue-endemic countries (Luz et al. 2011;
Massad and Coutinho 2011).

Essentially, the control of dengue has been based on three strategies (Reiter
and Gubler 2001): source reduction (locating and destroying mosquitoes’ breeding
places), larvicides and ultra-low volume (ULV) application of aerosol adulticides.
The first two strategies have been applied with varying degrees of success. However,
there is still considerable controversy over the efficacy of the current methods for
controlling adult mosquitoes (Reiter and Gubler 2001). At the time of the advent of
DDT, Aedes aegypti was highly susceptible to this agent (Reiter and Gubler 2001).
The successful application of DDT resulted in the eradication of Aedes aegypti from
22 countries in the Americas in 1962 and from all countries in the Mediterranean
region in 1972. However, the fate of DDT is well known. DDT was abandoned due to
the evolution of resistant insects and due to the environmental impacts of the insecti-
cide. Therefore, the control of dengue shifted to other approaches: source reduction,
larvicides and adulticides from other chemical families.

From a theoretical perspective, significant advances were made by Macdonald
(1952) who proposed that the most effective control strategy against vector-borne
infections is to kill adult mosquitoes. A recent analysis for another vector-borne dis-
ease, Chikungunya, was carried out by Dumont and Chiroleu (2010).

Recently, in a study for describing the dynamics of dengue, we showed that the
models describing infections transmitted by blood-sucking insects are indeed very
sensitive to the mosquitoes’ mortality rate (Burattini et al. 2008).

Let us review what we did in previous papers (Coutinho et al. 2006; Burattini
et al. 2008; Massad et al. 2011) on the same subject: In the paper by Coutinho et al.
(2006), the model’s basic structure was presented, and in particular it introduced a
new seasonality factor. This seasonality factor in Coutinho et al. (2006) was designed
to test one hypothesis to explain dengue’s overwintering; in the paper by Burattini
et al. (2008), the model presented by Coutinho et al. (2006) was numerically sim-
ulated in order to fit Singapore’s data on dengue incidence for the period between
2000 and 2005. In addition, a partial sensitivity analysis was presented by Burattini
et al. (2008), which intended to check if killing adult mosquitoes is the most effective
strategy. This was demonstrated numerically in that paper. In addition, we studied the
role of larvicide associated with adulticides to avoid the resurgence of outbreaks in
Singapore. This study was based on numerical simulations only. The paper by Mas-
sad et al. (2011) is a review of the previous papers and an analysis of the impact of
global warming on vector-borne infections.

The current paper is an analysis based on the basic model proposed by Coutinho
et al. (2006). It presents an analysis of four control strategies used against the vectors
of dengue. All the relevant stages are included and the ones not included (like larvae
and pupae) can be trivially added to the model. A complete analysis of the sensitivity
of transmission to the parameters can be easily carried out if necessary.
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The analysis presented below is based on the steady-state equilibrium of the vari-
ables involved in the model. So, the seasonality factor was neglected. Our analysis,
therefore, produces a rough average of the sensitivity of the infection to the parame-
ters over one cycle (year). In addition, by performing the analysis at steady-state, we
avoid all confusing transients. Moreover, seasonality neither influences the general
behavior of the system nor modifies the qualitative results of the sensitivity analysis.

2 Methods

2.1 The Basic Model

The basic model that is used to calculate the efficiency of control strategies can be
found in previous papers (Coutinho et al. 2006; Burattini et al. 2008; Massad et al.
2011).

The populations involved in the transmission are human hosts, mosquitoes and
their eggs. For the purposes of this paper, the term “eggs” also includes the inter-
mediate stages, such as larvae and pupae. Therefore, the population densities are di-
vided into the following compartments: susceptible humans denoted SH ; infected
humans, IH ; recovered (and immune) humans, RH ; total humans, NH ; suscepti-
ble mosquitoes, SM ; infected and latent mosquitoes, LM ; infected and infectious
mosquitoes, IM ; non-infected eggs, SE ; and infected eggs, IE . The variables appear-
ing in the model are summarized in Table 1.

The model is defined by the following equations:

dSH

dt
= −abIM

SH

NH

− μH SH + rH NH

(
1 − NH

κH

)
,

dIH

dt
= abIM

SH

NH

− (μH + αH + γH )IH ,

dRH

dt
= γH IH − μH RH ,

dSM

dt
= pcS(t)SE − μMSM − acSM

IH

NH

,

dLM

dt
= acSM

IH

NH

− γMLM − μMLM,

dIM

dt
= γMLM − μMIM + pcS(t)IE,

dSE

dt
= [

rMSM + (1 − g)rM(IM + LM)
](

1 − (SE + IE)

κE

)
− μESE − pcS(t)SE,

dIE

dt
= [

grM(IM + LM)
](

1 − (SE + IE)

κE

)
− μEIE − pcS(t)IE,

NH = SH + IH + RH ,

NM = SM + LM + IM,

NE = SE + LE,

(1)
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Table 1 Model variables and
their biological meaning Variable Biological Meaning

SH Density of susceptible humans

IH Density of infected humans

RH Density of recovered humans

SM Density of uninfected mosquitoes

LM Density of latent mosquitoes

IM Density of infected mosquitoes

SE Density of uninfected eggs (imm. stages)

IE Density of infected aquatic forms

where cS(t) = (d1 − d2 sin(2πf t + φ)) is a factor mimicking seasonal influences in
the mosquito population (Coutinho et al. 2005, 2006). The seasonal influence was
considered in another paper (Coutinho et al. 2006). In this paper, as explained in the
introduction, seasonality was neglected by making cS(t) = cS = constant.

Remark This model differs from the classical Ross–Macdonald model because the
extrinsic incubation period in the classical Ross–Macdonald model is assumed to
last τ days, whereas in model (1) we assumed an exponential distribution for the
latency in the mosquitoes. The classical Ross–Macdonald model can be obtained
from system (1) by replacing the fifth and sixth equations by

dLM

dt
= acSM

IH

NH

− μMLM − acSM(t − τ)
IH (t − τ)

NH (t − τ)
e−μMτ ,

dIM

dt
= acSM(t − τ)

IH (t − τ)

NH (t − τ)
e−μMτ − μMIM + pcS(t)IE,

where τ is the extrinsic incubation period and μM is the mosquito mortality rate.
The expressions developed below in this paper with Eqs. (1) can be replaced by the
corresponding expressions of the classical Ross–Macdonald model described above
by replacing γM

γM+μM
by e−μMτ . γM is related to τ by τ = 1

μM
ln[ γM

γM+μM
].

Remark Seasonal influence in the mosquito population was not considered in this
paper as mentioned above and in Amaku et al. (2013b). The reason for this is that in-
cluding seasonal variation, that is, considering cS(t) �= constant implies in additional
analytical difficulties (see, for instance, Wahl and Nowak 2000; Bacaër and Guer-
naoui 2006; Wang and Zhao 2008). In most tropical regions, the mosquito population
varies little throughout the year (Erickson et al. 2010) and, therefore, this additional
complication is unnecessary. Furthermore, at least for part of the year, the equilibrium
is reached even when seasonality is important. For regions where seasonal variation
is important, we partly analyzed (Burattini et al. 2008) the sensitivity to the parame-
ters of an approximated time-dependent reproductive number (Coutinho et al. 2006).
The results are qualitatively similar to the ones we found in the present paper. Note,
however, that this analysis can only be carried out numerically. The present paper is
a first step towards getting the time-dependent solution of system (1) by perturbation



M. Amaku et al.

theory, so that the sensitivity to the parameters in the time-dependent case can be cal-
culated analytically. We should stress that the purpose of the paper by Coutinho et al.
(2006) was different from the present one. In the latter paper, we tried to understand
overwintering of dengue in some regions of Brazil where seasonal transmission is
important.

2.2 Equilibrium Densities in the Absence of Seasonality

The equilibrium densities of model (1) can be calculated exactly in the case where
seasonality can be neglected, i.e., with cS(t) = cS = constant.

We begin by examining the steady-state values with αH = 0, i.e., with no disease-
induced mortality in the human population. This is a first approximation and it is a
very good approximation in the case of dengue, which has a very low mortality rate
(αH is of the order of 10−4/day). Because we set αH = 0, we denote the model vari-
ables with the zero superscript. By setting the derivatives in system (1) and αH equal
to zero, it is straightforward to solve the resulting system of nonlinear equations. The
results are:

N0
H = κH

(
rH − μH

rH

)
, (2)

NM = N0
M = pcS

μM

κE

[
1 − (μM)(μE + pcS)

rMpcS

]
, (3)

NE = N0
E = κE

[
1 − (μM)(μE + pcS)

rMpcS

]
. (4)

Note that NM and NE do not depend on the disease mortality in the human popula-
tion, i.e., they do not depend on αH . Also we get

I 0
H = (γM + gμM)a2bcNM − N0

H (μH + γH )(μM + γM)μM(1 − g)

(γM + gμM)a2bcNM

N0
H

(1 + γH

μH
) + ac(μH + γH )(μM + γM)

, (5)

R0
H = γH

μH

I 0
H , (6)

S0
H = N0

H − I 0
H − R0

H , (7)

S0
M = (1 − g)rMNM(κE − NE)pcS

κE(μM + ac
I 0
H

N0
H

)(μE + pcS) − grMpcS(κE − NE)

, (8)

I 0
M = (μH + γH )I 0

H

ab(1 − (1 + γH

μH
)

I 0
H

N0
H

)

, (9)

L0
M =

ac
I 0
H

N0
H

S0
M

γM + μM

, (10)
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S0
E = [rMS0

M + (1 − g)rM(NM − S0
M)](κE − NE)

κE(μE + pcS)
, (11)

I 0
E = N0

E − S0
E. (12)

If αH �= 0, the total numbers of mosquitoes and eggs do not change. The expression
for NH is complicated, but it is straightforward to calculate IH as a function of NH

as follows:

IH

NH

= (γM + gμM)a2bcNM

NH
− (μH + γH + αH )(μM + γM)μM(1 − g)

(γM + gμM)a2bcNM

NH
(1 + γH

μH
) + ac(μH + γH + αH )(μM + γM)

. (13)

Alternatively, we can write

IH

NH

= −μH

αH

+ rH

αH

(
1 − NH

κH

)
. (14)

If the disease induces mortality in the human population (αH �= 0), NH depends on
αH and is specified by a somewhat complicated expression. We will first obtain an
expression for NH as a function of αH . This expression is based on perturbation
theory. The exact expression for NH is presented subsequently.

2.3 Estimating NH by Perturbation Theory

An expression for NH can be obtained with perturbation theory. First, we sum the
first three equations of system (1) to obtain

dNH

dt
= rH NH

(
1 − NH

κH

)
− μH NH − αH IH . (15)

At equilibrium, this expression yields

rH NH

(
1 − NH

κH

)
− μH NH − αH IH = 0. (16)

Next, we expand NH and IH in powers of αH :

NH = N
(0)
H + αH N

(1)
H + α2

H N
(2)
H + O

(
α3

H

)
, (17)

IH = I
(0)
H + αH I

(1)
H + α2

H I
(2)
H + O

(
α3

H

)
, (18)

where N
(0)
H = N0

H and I
(0)
H = I 0

H . Neglecting the higher-order terms (because αH is
assumed to be very small) in (17) and (18) and substituting in (16), we obtain, after
some algebraic manipulations,

NH = N0
H − αH I 0

H

rH − μH

, (19)

where N0
H and I 0

H are given by Eqs. (2) and (5).
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2.4 The Exact Calculation of NH

The value of αH for dengue is such that an individual who is sick for five days has
a probability of dying of the order of 0.2 %, i.e., a negligible impact on human de-
mography. However, although it is reasonable to neglect αH for dengue, it is not
reasonable to do so for other vector-borne infections, such as yellow fever or malaria.
We therefore need the exact expression for NH given below.

First, we define

Γ = (γM + gμM)a2bcNM, (20)

where NM is given by Eq. (3), and

θ = (μH + γH + αH )(μM + γM). (21)

Next, we define

Π = acrH θ, (22)

Θ = −
[
acθκH (rH − μH ) − Γ rH

(
1 + γH

μH

)
+ θμMαH κH (1 − g)

]
, (23)

and

Ω = −Γ κH (rH − μH )

(
1 + γH

μH

)
+ Γ αH κH . (24)

Finally,

NH = −Θ + √
Θ2 − 4ΠΩ

2Π
. (25)

This expression reduces to Eq. (2) if αH = 0.
Note that, from Eq. (13) and (25), we can deduce that model (1) presents no back-

ward bifurcation. This is in contrast to the findings of Garba et al. (2008), and it will
be discussed in a future publication.

2.5 Sensitivity of the Variables to the Parameters

If seasonality is neglected (i.e., cS(t) = constant), the variables attain steady states,
as we have shown above. To estimate the sensitivity of a model variable in steady
state, Vi , to a parameter θj , we consider the relative variation in the parameter,

θj

θj
.

This variation will correspond to a variation Vi

Vi
in the model variable Vi given by

Vi

Vi

= θj

Vi

[Vi(θj + θj ) − Vi(θj )]
θj

θj

θj

. (26)

This expression can be approximated by (Chitnis et al. 2008; Massad et al. 2009)

Vi

Vi

= θj

Vi

∂Vi

∂θj

θj

θj

+ 1

2!
θ2
j

V 2
i

∂2Vi

∂θ2
j

(
θj

θj

)2

+ · · · . (27)
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Usually, the second- and higher-order terms can be neglected, provided that the rela-
tive variation in the parameter,

θj

θj
, is sufficiently small.

2.6 The Sensitivity of the Basic Reproduction Number to the Model’s Parameters

Linearizing the second, the fifth, the sixth and the eight equations of model (1) around
the trivial solution (no-infection), we obtain the threshold normally denoted R0 in the
literature (details can be found in Coutinho et al. (2006)):

R0 = a2bc(NM/NH )(gμM + γM)

(μH + αH + γH )(μM + γM)μM(1 − g)
, (28)

where NM and NH respectively denote the density of mosquitoes and of humans
in the absence of disease. Note that if g = 0, i.e., there is no vertical transmission,
the expression (28) for R0 reduces to the classical Macdonald equation (Lopez et al.
2002). As mentioned above, to obtain the classical Macdonald equation, we replace

γM

γM+μM
by e−μMτ . The case of g → 1 will be examined in the Discussion section.

Alternatively, we can deduce a threshold, Th, for the existence of endemic equi-
librium values for the human prevalence of the disease. This threshold is given by
Eq. (13):

IH

NH

= (γM + gμM)a2bcNM

NH
− (μH + γH + αH )(μM + γM)μM(1 − g)

(γM + gμM)a2bcNM

NH
(1 + γH

μH
) + ac(μH + γH + αH )(μM + γM)

.

If
IH

NH

≥ 0,

then an endemic state exists. For this outcome, it suffices that

(γM + gμM)a2bc
NM

NH

− (μH + γH + αH )(μM + γM)μM(1 − g) ≥ 0, (29)

or

Th = a2bc(NM/NH )(gμM + γM)

(μH + αH + γH )(μM + γM)μM(1 − g)
≥ 1,

which coincides with expression (28) if Th ≤1 because then NM =NM and
NH = NH . This result also holds if αH = 0, i.e., if the disease has no influence
on the population size. Note that in our model, because the disease has no influence
on the size of the mosquito population, NM = NM always holds.

We begin the sensitivity analysis by considering the impact of a form of control
of dengue vectors that is still unusual, namely, reducing the contact of the popu-
lation with mosquito bites. This form of control is represented by mosquito shields
(repellent-impregnated cloths), repellents and the use of bed-nets. The use of bed-nets
is very effective against malaria (Fegan et al. 2007) because it reduces the amount of
contact between the anopheline vectors and susceptible humans, the biting rate pa-
rameter a of model (1). We are aware that this strategy is effective against Anopheles
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mosquitoes because these vectors bite at twilight and early at night. In contrast, Aedes
mosquitoes bite primarily during the day. We include this analysis here for the sake
of generality and also because the use of repellents and mosquito shields can produce
the same reduction in the biting rate a and can be applied against Aedes mosquitoes.
The partial derivative of R0 with respect to a is given by

∂R0

∂a
= R0

a

[
2 − a

NH

∂NH

∂a

]
. (30)

Next, we analyze the impact of reducing the carrying capacity of the immature forms,
κE , on the magnitude of R0. This reduction represents a component of the strategy of
mechanical control, i.e., the identification and destruction of the places where Aedes
mosquitoes breed. The partial derivative of R0 with respect to κE is given by

∂R0

∂κE

= R0

{
pcS

NMμM

[
1 − μM(μE + pcS)

rMpcS

]
− 1

NH

∂NH

∂κE

}
. (31)

The use of larvicides is assumed to increase the mortality rate of the larvae, μE .
Therefore, the impact of such a strategy is a function of the partial derivative of R0
with respect to μE , which is

∂R0

∂μE

= −R0

(
κE

rMNM

+ 1

NH

∂NH

∂μE

)
. (32)

Finally, we take the partial derivative of R0 with respect to the mosquito mortality
rate μM to estimate the impact of the application of adulticides as a control strategy
against the dengue vectors. The result is given by

∂R0

∂μM

= R0

[
1

μM + γM

+ 1

μM(1 − g)
− pcSκE

μ2
MNM

− 1

NH

∂NH

∂μM

]
. (33)

Given these partial derivatives, we can calculate the sensitivity of R0 to the four pa-
rameters above and thereby estimate the relative efficiencies of the control strategies
for avoiding the introduction of dengue into a non-infected area. To perform these
calculations, we consider Eq. (27) for each of the parameters. For dengue, the last
term in Eqs. (30)–(33), involving the derivative of NH , is always very small relative
to the previous terms. The results of the sensitivity analysis, with parameter values as
in Table 2, are shown in Table 3.

2.7 The Sensitivity of the Force of Infection and the Human Prevalence to the
Model’s Parameters

The concept of ‘force of infection’ for vector-borne infection first appeared in the
seminal works of Ronald Ross (1911), who termed it the effective inoculation rate
and denoted it as h, for ‘dependent happening’. The concept was further elaborated
by George Macdonald (1952) who, in a now-famous Appendix to his paper ‘The
Analysis of Equilibrium in Malaria’, defined the inoculation rate as

h = mabs, (34)
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Table 3 Results of the
sensitivity analysis according to
the general Eq. (27). The results
represent the relative amount of
variation (expressed in
percentual variation) in the
variable if we vary the
parameters by 1 %

Variable Mean 95 % Confidence Interval

R0 1.74 1.45–2.07

λ 2.59 × 10−5 1.48 × 10−5–3.96 × 10−5

IH /NH 1.04 × 10−4 3.84 × 10−5–1.34 × 10−4

Parameter Mean

Sensitivity of R0 to the control parameters

a 1.94

κE 0.69

μE (−) 8.28×10−4

μM (−) 2.42

Sensitivity of λ to the control parameters

a 5.02

κE 2.32

μE (−) 1.93×10−3

μM (−) 5.40

Sensitivity of IH /NH to the control parameters

a 2.67

κE 1.34

μE (−) 2.31×10−2

μM (−) 3.20

where m is the mosquito density relative to the human population ( NM

NH
in our nota-

tion), a is the mosquito’s daily rate of biting, b is the probability of infection from
mosquitoes to humans, and s is a quantity that Macdonald termed the ‘Sporozoite
Rate’, i.e., the prevalence of infection in the mosquitoes ( IM

NM
in our notation). Note

that Eq. (34) is now expressed as

λ = ab
IM

NH

, (35)

where

IM = NH (μH + αH + γH ) IH

NH

ab(1 − (1 + γH

μH
) IH

NH
)

. (36)

Before we analyze the sensitivity of the force of infection to the model’s parameters
related to control, we first deduce a relationship between λ and R0.

We begin by substituting IM of Eq. (36) in Eq. (35) to obtain

λ = (μH + αH + γH ) IH

NH

(1 − (1 + γH

μH
) IH

NH
)

. (37)
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If αH ≈ 0, the human prevalence, IH

NH
, can be expressed in terms of R0 as follows:

IH

NH

= μM(1 − g)(R0 − 1)

μM(1 − g)R0(1 + γH

μH
) + μH ac

. (38)

Therefore,

λ = μM(1 − g)(μH + αH + γH )μH (R0 − 1)

μM(1 − g)(μH + γH ) + μH ac
. (39)

The partial derivatives of λ and IH

NH
with respect to the parameters θj are readily

calculated, and the sensitivity of λ and IH

NH
to the parameters is estimated.

3 Results

3.1 Numerical Simulations

We simulated model (1) with the parameter values available from the literature. How-
ever, it is known that these parameters vary with the place, local temperature, climatic
factors, mosquito strains, and human demography. Therefore, we applied a Monte
Carlo simulation algorithm (Amaku et al. 2009) to generate parameter distributions
that could mimic real conditions. We used a Beta-distributed random number gen-
erator with equal parameters to guarantee the symmetry of the distribution around
the mean. Because the Beta distribution with equal parameters has a mean of 0.5,
we multiplied the final result by 2. We ran the Monte Carlo algorithm 1000 times
to generate the distributions of the parameters. The parameters’ baseline values, the
mean values of the simulation, the variance, and the 95 % confidence intervals for
each parameter are shown in Table 2.

3.2 Results of the Sensitivity Analysis

Table 3 shows the results of the sensitivity analysis according to the general Eq. (27).
The results represent the relative amount of variation (expressed in percentual varia-
tion) in the variable if we vary the parameters by 1 %.

Note from Table 3 that R0, λ and IH

NH
show the greatest sensitivities to the

mosquito’s mortality rate μM , followed by the biting rate a and the carrying ca-
pacity of the immature stages κE . In addition, R0, λ and IH

NH
are very insensitive to

the larval mortality rate μE . Accordingly, a reduction of 1 % in the biting rate a or
the carrying capacity of the immature stages κE decreases R0 by 1.94 % and 0.69 %,
respectively, it decreases λ by 5.02 % and 2.32 %, and decreases IH

NH
by 2.67 % and

1.34 %, respectively. Also, an increase of 1 % in the mosquito mortality rate μM

causes a decrease of 2.42 % in R0, of 5.40 % in λ and of 3.20 % in IH

NH
. In con-

trast, increasing the larval mortality rate μE by 1 % decreases R0, λ and IH

NH
by only

0.000828 %, 0.00193 %, 0.0231 %, respectively. These differences in the sensitivity
of R0, λ and IH

NH
to parameter variation can be understood from Eq. (27). Although

the partial derivatives of λ with respect to the parameters are smaller than the partial
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derivatives of R0 with respect to the parameters, the ratio
θj

λ
� θj

R0
. The same applies

for IH

NH
.

4 Discussion

The knowledge of dengue epidemiology accumulated over the past decades enables
us to conclude that the transmission thresholds and the intensity of dengue transmis-
sion are determined by several factors: the level of immune protection of the pop-
ulation involved; the serotype of dengue virus circulating at each time; the density,
longevity and biting behavior of the mosquitoes; the climate; and the demography
of the human hosts (Rodrigues et al. 2012). Despite the current development of a
safe and effective tetravalent vaccine (Guy et al. 2011), vector control is still the only
available strategy to minimize the number of cases within the affected populations.
To date, however, the effectiveness of the strategies for controlling Aedes mosquitoes
has been limited. The analysis presented in this paper is intended to contribute to
the efforts to check the advance of dengue to areas still free from the disease and to
reduce transmission in endemic areas.

This paper presents the most complete analysis of what is a basic model for dengue
transmission. All the relevant stages are included and the ones not included (like
larvae and pupae) can be trivially added to the model.

The current paper is an analysis of the basic model proposed by Coutinho et al.
(2006) and numerically studied by Burattini et al. (2008). The fact that the ex-
trinsic incubation period is changed from being modeled as a fixed time delay
to being modeled as an exponentially distributed time period is not relevant for
the proposed analysis. As mentioned above, the expressions developed below in
this paper with Eqs. (1) can be replaced by the corresponding expressions of the
classical Ross–Macdonald model described above by replacing γM

γM+μM
by e−μMτ .

In other words, the results of the analysis are the same, irrespective of the way
we choose to model the incubation period. Actually, the main difference between
this paper and the previous ones (Coutinho et al. 2006; Burattini et al. 2008;
Massad et al. 2011) is that in the current study we analyze the sensitivity of the
endemic equilibrium to variation in the parameters related to transmission in a much
more complete way than before. The sensitivity analysis presented in the previous
papers consisted only in the derivation of the partial derivatives of R0 with respect to
the parameters. This is only part of the sensitivity analysis. In the present paper, the
calculation of sensitivity of R0 to the parameters is completed (Eq. (27)). In addition,
we calculated the equilibrium prevalence for the model, obtaining expressions that
are completely new, like Eq. (37) which relates the force of infection to the preva-
lence of the disease in humans and to the parameters of transmission relative to the
human hosts only. With this expression we propose the estimation of the force of
infection for dengue as a function of the equilibrium prevalence in humans.

Furthermore, the current and complete sensitivity analysis includes the force of
infection and the prevalence of dengue in humans. Finally, the sensitivity of the basic
reproduction number and the force of infection to the biting rate is also a quite new
finding.
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Ellis et al. (2011) have approached the problem of the sensitivity of dengue by
numerically simulating two coupled models, one describing the vector population and
the other the host population. These models are extremely complex, including a total
of 99 parameters for the vector and host populations. Although the calculations based
on these models are very important, they mask the dynamics involved. In contrast,
the dynamics of dengue constitute the main interest of our paper. Our model contains
only 16 parameters and admits an analytical solution that can be compared with the
classical models designed for the study of vector-borne infections. These differences
notwithstanding, the results of Ellis et al. (2011) are qualitatively similar to the results
that we obtained.

Some of the findings of the current paper are qualitatively similar to previous
results. However, this is the first paper that proposes a quantification of the relative
efficacy of different control strategies. In other words, we are now able to say by
how much killing adult mosquitoes is more efficient than killing immature stages, for
instance.

Our results identify the control of adult mosquitoes as the most effective strat-
egy to reduce both R0, λ and IH

NH
. However, we are aware that the effectiveness of

this strategy is severely constrained, e.g., by the difficulty of achieving sufficiently
high coverage of the surfaces used by the mosquitoes for resting (Integrated Vector
Management 2012; Rodrigues et al. 2012) and by the limitations of ultra-low vol-
ume insecticide spraying, which involves a low probability of contact between adult
mosquitoes and the insecticide droplets (Reiter and Gubler 2001).

The second most effective strategy is the reduction of the contact between the
vectors and hosts, quantified by the daily biting rate a. This strategy has been suc-
cessfully applied in malaria control, e.g., through the use of insecticide-impregnated
bed-nets. This approach to malaria control is effective (Brownstein et al. 2003) be-
cause the malaria mosquito bites at night. Aedes mosquitoes, in contrast, are day-
biting mosquitoes, and bed nets are not a feasible method to avoid their bites. In
certain countries, however, people habitually take a siesta, a rest during the afternoon
(Reiter and Gubler 2001). In addition, insecticide-treated clothes (ITCs) used as per-
sonal protection against malaria infection (Reiter and Gubler 2001) are beginning to
be tested against dengue (Wilder-Smith et al. 2012).

The next strategy suggested by the analysis of the model’s sensitivity involves
the carrying capacity of the immature stages, κE . This strategy is associated with
the mechanical control of the sources of the mosquitoes. Our assumption is that by
destroying mosquitoes’ breeding places, we are reducing κE .

It is probable that this approach is the most widespread strategy for the control
of dengue in endemic regions. However, the results obtained from this strategy have
been disappointing. It is probable that these disappointing results are due to the lack
of cooperation by the affected communities, which often hampers the application of
the method. Unfortunately, R0 was not found to be very sensitive to this strategy.
A 1 % reduction in κE yielded only a 0.69 % reduction in R0. The force of infection,
in contrast, was shown to be relatively sensitive to variation in κE . A 1 % reduction in
this parameter yielded a 2.32 % reduction in λ. Finally, a 1 % reduction in κE caused
a reduction of 1.34 % in the human prevalence.

The least effective strategy analyzed was the use of larvicide. This strategy is
expected to increase the mortality rate of immature stages, μE . Both R0 and λ vary
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by a fraction on the order of 10−3 percent, and IH

NH
varies by a fraction on the order

of 10−2 percent if we vary μE by 1 %.
Some health authorities are convinced that to kill eggs/larvae is better than to kill

adult mosquitoes. This is intuitively incorrect because killing one egg/larvae kills
one adult mosquito; but killing one adult mosquito kills hundreds of eggs/larvae and
our model quantifies this and other effects. This proposal, however, does not take
into account the many logistic difficulties in implementing the adulticide strategy.
Our main conclusion provides a rational explanation for the failure of dengue control
and a strong argument to consider adulticides, in spite of their inconveniences. Even
worse, the paradigm among dengue authorities that the application of adulticides is
close to impossible is hindering entomological research in the area of insecticides
and their application in field conditions.

Obviously, the possible control strategies analyzed in this paper are expected to be
applied in combination, although we studied each of them in isolation. In addition, it
is necessary to carry out a study of financial costs and logistic feasibility to determine
the most effective vector control strategy against dengue. In a future paper, we intend
to analyze the effect of a combination of strategies numerically using a Monte Carlo
simulation and also to consider the effects of the uncertainties on the parameters on
the calculated values of R0, λ and IH

NH
. This is not straightforward as discussed in

Silverman et al. (2004), Coutinho et al. (2004) and Cousins and James (2006).
The theoretical case of 100 % vertical transmission (g = 1), i.e., the case in which

all of the eggs from the latent and infected mosquitoes are infected, is interesting. In
fact, a structural change occurs in our model if g → 1. The populations of susceptible
and infected eggs become completely decoupled. It can be verified that the disease
can sustain itself even without human hosts. Actually, as shown by previous authors
(Adams and Boots 2010), this is the only way in which the infection circulates exclu-
sively among the vectors in the absence of hosts.

In addition, if g = 1 and human hosts are introduced into the system, the evolution
of the system over time results in a situation in which all mosquitoes are infected
because all of the eggs of the infected mosquitoes are infected. Therefore, if g = 1
and human hosts are introduced, the population of susceptible mosquitoes and eggs
decreases to zero. This result can be verified from Eqs. (8) and (11).

Our approach has some important simplifications with respect to reality. The first
one is the homogeneous mixing assumption. According to this assumption, the den-
sity of every subpopulation is the same everywhere and from the model it seems as
if every single infected mosquito has the same probability of contacting every host.
Actually, this is not true and it is a notational artifact. In the Appendix, we explain
how this notational artifact can be eliminated. Furthermore, we show how to relax the
homogeneous mixing assumption and analyze some consequences of this.

The second limitation is that the model predicts a stable endemic equilibrium,
which is seldom observed. One reason for this is that in this model, for simplification,
we exclude seasonality, which precludes the existence of such equilibrium for long
periods of time. The relative sensitivity of the variables to the parameters, however,
is also valid (actually to a very good approximation) for non-equilibrium situations.
This has already been demonstrated by numerical simulations of a model very similar
to the one we are dealing with in this paper (Coutinho et al. 2006; Burattini et al. 2008;
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Massad et al. 2011). Finally, the actual values of some of the parameters used in the
simulations are not known, and we had to take advantage of Monte Carlo simulations.
The relative sensitivity to the parameters, however, is not affected by the uncertainties
in the parameter’s values.

The remarkable growing of the dengue cases worldwide demonstrates that all the
strategies employed so far against dengue failed. The hundreds of millions of cases
every year testify for that point of view. Our paper was intended to help the health
authorities choose the strategies that are probably (theoretically) the best to control
dengue.

As mentioned above, our paper is intended to contribute to a central debate con-
cerning dengue control, namely, the search-and-destroy breeding places versus the
application of adulticides. Our contribution is to calculate the relative efficacy of
each of those strategies (along with others) and this is done in the sensitivity analy-
sis section. However, to do so the equilibrium analysis is an unavoidable step. Other
very important issues were considered by other authors: fluctuations in dengue hem-
orrhagic fever (Aguiar et al. 2013); multi-strain epidemiological models (Kooi et al.
2013); the effect of introducing sterile insects to control their population (Anguelov
et al. 2012); a recent analysis of the effect of vector control for another vector-borne
disease, Chikungunya, was carried out by Dumont and Chiroleu (2010).

The model presented in this paper contains parameters that are measurable. What
people normally fail to realize is that there are legal, practical and economical re-
quirements involved in the measurement of these parameters. These requirements are
often contradictory. For example, in some case we must use a small crew of public
health workers but have to obtain the data in short time.

Sometimes the errors involved in some parameters are very difficult to estimate.
For example, to measure the mortality due to some diseases we need to know the
number of infected people and the number of deaths among them. For economical
reasons, the number of infected people is estimated clinically and, therefore, not very
accurately (Is this person suffering from dengue? This is answered clinically). On
the other hand, the number of deaths from the disease are very precisely measured in
autopsies (If a person dies from dengue this can be precisely determined).

Finally, it is important to emphasize that the model presented in this paper has no
backward bifurcation. Backward bifurcation would imply that dengue control would
be much more difficult than it already is. This is because, according to the model
presented in this paper, the reduction of R0 below unit should suffice to stop the
transmission.

This contrasts with the conclusion of Pinho et al. (2010) who applied an inade-
quate way to estimate the impact of reducing R0 below unit on dengue transmission
(Amaku et al. 2013a).
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Appendix: Some Comments on the Meaning of the Model’s Equations

In this appendix, we show how to include spatial heterogeneities in the model and,
by doing so, we clarify the meaning of the model’s equations.

First, we assume that mosquitoes have a limited range of flight, which implies
that the probability of transmission of infection from one infected mosquito to one
susceptible host varies according to the distance between them.

Consider the first equation of system (1),

dSH

dt
= −abIM

SH

NH

− μH SH + rH NH

(
1 − NH

κH

)
. (40)

All the variables are densities. This implies that we are considering a very large region
where the populations of mosquitoes and hosts are constant, that is, do not vary from
point to point. Then, one might think that in Eq. (40) a mosquito in a certain place
can bite a host which can be very far from it. This is not reasonable and it is not
true for Eq. (40). To see this, consider the parameter a, the mosquitoes’ biting rate.
We can write this as a = a′A, where a′ is the biting rate per unit area and A is the
area where the mosquitoes’ flight ranges. Therefore, only humans inside this area
are bitten by this mosquito. But, since the humans and mosquitoes populations are
assumed as homogeneously distributed, this does not appear in the equations because
in parameter a this effect is hidden.

Let us now introduce spatial heterogeneity. For this we should specify the po-
sition 
r , representing the spatial location of individuals. Thus, let SH (
r) ds be the
number of human susceptibles in the small area ds around the position 
r .

Let us now consider how SH (
r) ds varies with time. Let IM(
r ′) ds′ be the num-
ber of infected mosquitoes in the small area ds′ around the position 
r ′. The total
number of bites the infected mosquitoes population inflicts in a time interval dt is
a′IM(
r ′) ds′ dt . A fraction of those bites F(|
r − 
r ′|) is inflicted on the hosts at posi-
tion 
r , that is, SH (
r) ds. Of course, F(|
r −
r ′|) is a decreasing function of the distance
|
r −
r ′| between infected mosquitoes and susceptible humans. Thus, Eq. (40) becomes

dSH (
r)
dt

= −b
SH (
r)
NH (
r)

∫
d
s′ a′(
r ′)F (∣∣
r − 
r ′∣∣)IM

(
r ′) − μH SH (
r)

+ rH NH (
r)
(

1 − NH (
r)
κH (
r)

)
. (41)

All the other equations in system (1) should be similarly modified and, of course, the
result is very difficult to integrate. When a′(
r ′)F (|
r − 
r ′|) is equal to a′Aθ(|
r − 
r ′|),
and the densities are homogeneously distributed in space, we have

b
SH (
r)
NH (
r)

∫
d
s′ a′(
r ′)F (∣∣
r − 
r ′∣∣) = b

SH

NH

IM

∫
d
s′ a′(
r ′)F (∣∣
r − 
r ′∣∣) = b

SH

NH

IMa,

(42)
and Eq. (41) reduces to (40).

The above formalism is necessary when we are dealing with large regions of
space, where heterogeneities are significant. However, for small regions, where het-
erogeneities can be neglected, the system of Eqs. (1) of the main text is a good
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approximation. The relative sensitivity of the transmission variables to the studied
parameters, however, is not expected to be significantly influenced by spatial hetero-
geneities. Of course, the value of the transmission variables may vary from place to
place but the relative sensitivity, the main objective of the present analysis, of these
variables to the parameters should be the same.

References

Adams, B., & Boots, M. (2010). How important is vertical transmission in mosquitoes for the persistence
of dengue? Insights from a mathematical model. Epidemics, 2, 1–10.

Aguiar, M., Kooi, B. W., Rocha, F., Ghaffari, P., & Stollenwerk, N. (2013). How much complexity is
needed to describe the fluctuations observed in dengue hemorrhagic fever incidence data? Ecol. Com-
plex., 16, 31–40.

Amaku, M., Azevedo, R. S., Castro, R. M., Massad, E., & Coutinho, F. A. B. (2009). Relationship among
epidemiological parameters in a non-immunized Brazilian community. Mem. Inst. Oswaldo Cruz,
104, 897–900.

Amaku, M., Burattini, M. N., Coutinho, F. A. B., & Massad, E. (2013a). A comment on the estima-
tion of the Basic Reproduction Number for vector-borne infections. Phil. Trans. R. Soc. A, eLetter.
http://rsta.royalsocietypublishing.org/content/368/1933/5679.abstract/reply. Accessed 17 Aug 2013.

Amaku, M., Burattini, M. N., Coutinho, F. A. B., Lopez, L. F., & Massad, E. (2013b). Maximum equi-
librium prevalence of mosquito-borne microparasite infections in humans. Comput. Math. Methods
Med., 2013, 659038. doi:10.1155/2013/659038.

Anguelov, R., Dumont, Y., & Lubuma, J. M.-S. (2012). Mathematical modeling of sterile insect technology
for control of anopheles mosquito. Comput. Math. Appl., 64(3), 374–389.

Bacaër, N., & Guernaoui, S. (2006). The epidemic threshold of vector-borne diseases with seasonality: the
case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol., 53, 421–436.

Beatty, M. E., Letson, G. W., & Margolis, H. S. (2008). Estimating the global burden of dengue. Ab-
stract book: dengue 2008. In Proceedings of the 2nd international conference on dengue and dengue
haemorrhagic fever, Phuket, Thailand.

Beatty, M. E., Beutels, P., Meltzer, M. I., Shepard, D. S., Hombach, J., et al. (2011). Health economics
of dengue: a systematic literature review and expert panel’s assessment. Am. J. Trop. Med. Hyg., 84,
473–488.

Brownstein, J. S., Heth, E., & O’Neill, L. (2003). The potential of virulent Wolbachia to modulate disease
transmission by insects. J. Invertebr. Pathol., 84, 24–29.

Burattini, M. N., Chen, M., Chow, A., Coutinho, F. A. B., Goh, K. T., et al. (2008). Modelling the control
strategies against dengue in Singapore. Epidemiol. Infect., 136, 309–319.

Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of
malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol., 70, 1272–1296.

Cousins, R. D., & James, F. (2006). Comment on “The distribution of composite measurements: how
to be certain of the uncertainties in what we measure,” by M. P. Silverman, W. Strange, and T. C.
Lipscombe [Am. J. Phys. 72(8), 1068–1081 (2004)]. Am. J. Phys., 72(8), 1068–1081.

Coutinho, F. A. B., Lopez, L. F., & Massad, E. (2004). Comment on “The distribution of composite mea-
surements: how to be certain of the uncertainties in what we measure,” by M. P. Silverman, W.
Strange, and T. C. Lipscombe [Am. J. Phys. 72(8), 1068–1081 (2004)] Am. J. Phys., 72(8), 1068–
1081.

Coutinho, F. A. B., Burattini, M. N., Lopez, L. F., & Massad, E. (2005). An approximate threshold condi-
tion for non-autonomous system: an application to a vector-borne infection. Math. Comput. Simul.,
70, 149–158.

Coutinho, F. A. B., Burattini, M. N., Lopez, L. F., & Massad, E. (2006). Threshold conditions for a non-
autonomous epidemic system describing the population dynamics of dengue. Bull. Math. Biol., 68,
2263–2282.

Dumont, Y., & Chiroleu, F. (2010). Vector control for the Chikungunya disease. Math. Biosci. Eng., 7(2),
313–345.

Ellis, A. M., Garcia, A. J., Focks, D. A., Morrison, A. C., & Scott, T. W. (2011). Parameterization and
sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue trans-
mission and their control. Am. J. Trop. Med. Hyg., 82, 257–264.

http://rsta.royalsocietypublishing.org/content/368/1933/5679.abstract/reply
http://dx.doi.org/10.1155/2013/659038


M. Amaku et al.

Erickson, R. A., Presley, S. M., Allen, L. J. S., Long, K. R., & Cox, S. B. (2010). A dengue model with a
dynamic Aedes albopictus vector population. Ecol. Model., 221, 2899–2908.

Fegan, G., Noor, A. M., Akhwale, W. S., Cousens, S., & Snow, R. W. (2007). Effect of expanded
insecticide-treated bednet coverage on child survival in rural Kenya: a longitudinal study. Lancet,
370, 1035–1039.

Forattini, O. P. (1996). Medical culicidology. São Paulo: EDUSP.
Garba, S. M., Gumel, A. B., & Abu Bakar, M. R. (2008). Backward bifurcations in dengue transmission

dynamics. Math. Biosci., 215, 11–25.
Gubler, D. J. (2002). The global emergence/resurgence of arboviral diseases as public health problems.

Arch. Med. Res., 33, 330–342.
Gubler, D. J. (2011). Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop.

Med. Health, 39 (4 Suppl), 3–11.
Guy, B., Almond, J., & Lang, J. (2011). Dengue vaccine prospects. Lancet, 377, 381–382.
Halstead, S. B. (1990). Dengue. In K. S. Warren & A. A. F. Mahmoud (Eds.), Tropical and geographical

medicine (pp. 675–684). New York: McGraw-Hill.
Index Mundi (2011). http://www.indexmundi.com/map/?v=30&l=pt. Accessed 18 Aug 2011.
Integrated Vector Management (2012). http://www.ivmproject.net/about/index.cfm?fuseaction=static&

label=dengue. Accessed 1 Apr 2012.
Khasnis, A. A., & Nettlelman, M. D. (2005). Global warming and infectious disease. Arch. Med. Res., 36,

689–696.
Kooi, B. W., Aguiar, M., & Stollenwerk, N. (2013). Bifurcation analysis of a family of multistrain epi-

demiology models. J. Comput. Appl. Math., 252, 148–158.
Lambrechts, L., Scott, T. W., & Gubler, D. J. (2010). Consequences of the expanding global distribution

of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis., 4, e646.
Lopez, L. F., Coutinho, F. A. B., Burattini, M. N., & Massad, E. (2002). Threshold conditions for infection

persistence in complex host-vectors interactions. C. R. Biol., 325, 1073–1084.
Luz, P. M., Vanni, T., Medlock, J., Paltiel, A. D., & Galvani, A. P. (2011). Dengue vector control strategies

in an urban setting: an economic modelling assessment. Lancet, 377, 1673–1680.
Macdonald, G. (1952). The analysis of equilibrium in malaria. Trop. Dis. Bull., 49, 813–828.
Massad, E., & Coutinho, F. A. B. (2011). The cost of dengue control. Lancet, 377, 1630–1631.
Massad, E., Behrens, R. H., Burattini, M. N., & Coutinho, F. A. B. (2009). Modeling the risk of malaria

for travelers to areas with stable malaria transmission. Malar. J., 8, 296.
Massad, E., Coutinho, F. A. B., Lopez, L. F., & da Silva, D. R. (2011). Modeling the impact of global

warming on vector-borne infections. Phys. Life Rev., 8, 169–199.
Ocampo, C. B., & Wesson, D. M. (2004). Population dynamics of Aedes aegypti from a dengue hyperen-

demic urban setting in Colombia. Am. J. Trop. Med. Hyg., 7(1), 506–513.
Pinho, S. T. R., Ferreira, C. P., Esteva, L., Barreto, F. R., Morato e Silva, V. C., & Teixeira, M. G. L. (2010).

Modelling the dynamics of dengue real epidemics. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci.,
368, 5679–5693.

Reiter, P., & Gubler, D. J. (2001). Surveillance and control of urban dengue vectors. In D. J. Gubler & G.
Kuno (Eds.), Dengue and dengue hemorrhagic fever (pp. 425–462). Wallingford: CABI Publishing.

Rodrigues, H. S., Monteiro, M. T., & Torres, D. F. M. (2012). Dengue in Cape Verde: vector control and
vaccination. arXiv:1204.0544v1.

Ross, R. (1911). The prevention of malaria (2nd ed.). London: Murray. With addendum on the theory of
happenings.

Silverman, M. P., Strange, W., & Lipscombe, T. C. (2004). The distribution of composite measurements:
how to be certain of the uncertainties in what we measure. Am. J. Phys., 72, 1068–1081.

Suaya, J. A., Shepard, D. S., & Siqueira, J. B. (2009). Cost of dengue cases in eight countries in the
Americas and Asia: a prospective study. Am. J. Trop. Med. Hyg., 80, 846–855.

UNWTO World Tourism Organization (2011). Tourism highlights. www.world-tourism.org/facts/
menu.html. Accessed 11 Mar 2011.

Wahl, L. M., & Nowak, M. A. (2000). Adherence and drug resistance: predictions for therapy outcome.
Proc. - Royal Soc., Biol. Sci., 267, 835–843.

Wang, W., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic
environments. J. Dyn. Differ. Equ., 20, 699–717.

WHO (2009). Dengue and dengue haemorrhagic fever. Fact sheet No. 117. http://who.int/mediacentre/
factsheets/fs117/en/print.html. Accessed 11 Mar 2011.

WHO (2012). Dengue and severe dengue. Fact sheet No. 117. http://www.who.int/mediacentre/
factsheets/fs117/en/. Accessed 10 Apr 2012.

http://www.indexmundi.com/map/?v=30&l=pt
http://www.ivmproject.net/about/index.cfm?fuseaction=static&label=dengue
http://www.ivmproject.net/about/index.cfm?fuseaction=static&label=dengue
http://arxiv.org/abs/arXiv:1204.0544v1
http://www.world-tourism.org/facts/menu.html
http://www.world-tourism.org/facts/menu.html
http://who.int/mediacentre/factsheets/fs117/en/print.html
http://who.int/mediacentre/factsheets/fs117/en/print.html
http://www.who.int/mediacentre/factsheets/fs117/en/
http://www.who.int/mediacentre/factsheets/fs117/en/


Relative Efficacy of Dengue Vectors Control

Wilder-Smith, A., Ooi, E. E., Vasudevan, S. G., & Gubler, D. J. (2010). Update on dengue: epidemiology,
virus evolution, antiviral drugs, and vaccine development. Curr. Infect. Dis. Rep., 12, 157–164.

Wilder-Smith, A., Renhorn, K. E., Tissera, H., Abu Bakar, S., Alphey, L., et al. (2012). DengueTools:
innovative tools and strategies for the surveillance and control of dengue. Glob. Health Action, 5,
17273.

Yasuno, M., & Tonn, R. J. (1970). A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull.
World Health Organ., 43, 319–325.


	A Comparative Analysis of the Relative Efﬁcacy of Vector-Control Strategies Against Dengue Fever
	Abstract
	Introduction
	Methods
	The Basic Model
	Equilibrium Densities in the Absence of Seasonality
	Estimating NH by Perturbation Theory
	The Exact Calculation of NH
	Sensitivity of the Variables to the Parameters
	The Sensitivity of the Basic Reproduction Number to the Model's Parameters
	The Sensitivity of the Force of Infection and the Human Prevalence to the Model's Parameters

	Results
	Numerical Simulations
	Results of the Sensitivity Analysis

	Discussion
	Acknowledgements
	Conﬂict of interest
	Appendix: Some Comments on the Meaning of the Model's Equations
	References


