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To determine the maximum equilibrium prevalence of mosquito-borne microparasitic infections, this paper proposes a general
model for vector-borne infections which is flexible enough to comprise the dynamics of a great number of the known diseases
transmitted by arthropods. From equilibrium analysis, we determined the number of infected vectors as an explicit function of the
model’s parameters and the prevalence of infection in the hosts. From the analysis, it is also possible to derive the basic reproduction
number and the equilibrium force of infection as a function of those parameters and variables. From the force of infection, we were
able to conclude that, depending on the disease’s structure and the model’s parameters, there is a maximum value of equilibrium
prevalence for each of the mosquito-bornemicroparasitic infections.The analysis is exemplified by the cases of malaria and dengue
fever. With the values of the parameters chosen to illustrate those calculations, the maximum equilibrium prevalence found was
31% and 0.02% for malaria and dengue, respectively. The equilibrium analysis demonstrated that there is a maximum prevalence
for the mosquito-borne microparasitic infections.

1. Introduction

Vector-borne diseases such as malaria, dengue, yellow fever,
plague, trypanosomiasis, and leishmaniasis have been major
causes ofmorbidity andmortality through human history [1].

Currently, half of the world’s population is infected with
at least one type of vector-borne pathogens [2, 3]. Only one
mosquito-borne infection, dengue fever, affects the lives of 3.6
billion people worldwide [4, 5].

In the 17th through early 20th centuries, human morbid-
ity and mortality due to vector-borne diseases outstripped
all other causes combined [6]. By the 1960s the majority
of vector-borne infections have been effectively controlled
or targeted for intensive programmes. However, such pro-
grammes were discontinued in the 1970s because vector-
borne infections were no longer considered major public

health problems [7–10]. As a consequence, in the 1980s, the
world observed a resurgence of old vector-borne diseases and
the emergence of new ones [11].

The historical paradigm of mosquito-borne infections,
malaria, accounts for the most deaths than any other human
vector-borne diseases, with approximately 300million people
infected and up to one million deaths every year [12, 13].
Explosive epidemics have also marked the resurgence of
dengue and yellow fever [1], and a great number of the
most important vector-borne human diseases have exhibited
dramatic changes in incidence and geographic range in recent
decades [11].

Vectors of human diseases are typically species of
mosquitoes that are able to transmit viruses, bacteria, or par-
asites to humans and other warm-blooded hosts [14]. Among
the mosquito-borne infections, arthropod-borne viruses
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Table 1: Model variables and their biological meanings.

Variable Biological meaning
𝑆
𝐻

Susceptible humans density
𝐿
𝐻

Latent humans density
𝐼
𝐻

Infectious humans density
𝑅
𝐻

Recovered humans density
𝑆
𝑀

Uninfected mosquitoes density
𝐿
𝑀

Latent mosquitoes density
𝐼
𝑀

Infectious mosquitoes density
𝑆
𝐸

Uninfected eggs (imm. stages) density
𝐼
𝐸

Infected aquatic forms density

(arboviruses) comprise the largest class of vector-borne
human pathogens with more than 500 arboviruses being
described up to now, 20 percent of which causing human
diseases [6, 15, 16]. Examples of arboviruses include dengue
and dengue haemorrhagic fever, yellow fever, Rift Valley
fever, West Nile virus, and Japanese encephalitis among [6,
16, 17].

Approximately 80 percent of vector-borne disease trans-
mission typically occurs among 20 percent of the host
populations [19, 20]. Thus, the overwhelming impact of the
distribution of vector-borne infections is disproportionately
on tropical and subtropical countries [2]. Unfortunately, this
considerable economic, ecological, and public health impact
of vector-borne infections is expected to continue, given
limited capabilities for detecting, identifying, and addressing
likely epidemics [1].

This paper proposes a general model for vector-borne
infections which is flexible enough to comprise the dynamics
of some known diseases transmitted by arthropods. From
equilibrium analysis, we determined the number of infected
vectors as an explicit function of the model’s parameters and
the prevalence of infection in the hosts. From the analysis, it is
also possible to derive the basic reproduction number and the
equilibrium force of infection as a function of those param-
eters and variables. From the force of infection, we were able
to conclude that, depending on the disease’s structure and the
model’s parameters, there is a maximum value of equilibrium
prevalence for each mosquito-borne microparasitic infec-
tions.This is important because of the following: (a) knowing
themaximum prevalence at equilibrium (neglecting seasonal
variations, see below), we can calculate the maximum force
of infection and, therefore, the maximum probability that a
visitor gets the disease when visiting an endemic region; (b)
the maximum force of infection can be immediately used
to calculate the maximum incidence of the disease (again
neglecting seasonal variations) in an affected endemic region;
(c) if a vector-borne disease is introduced in an unaffected
area, we can predict the maximum prevalence at equilibrium
for the demographic and disease-related parameters in that
area. This gives a very good idea of the amount of resources
that will be needed to care for these cases. This allows public
health authorities to anticipate the (economic and social)
importance of a given disease in order to increase public
health preparedness to deal with such challenges.

The model we present in this paper is a deterministic
model. However, as we will show, it is possible to introduce
some elements of stochasticity.

The whole analysis is exemplified by the cases of malaria
and dengue fever.

2. The Model

The model that is used to calculate the efficiency of control
strategies can be found in [21–23].

The populations involved in the transmission are human
hosts, mosquitoes, and their eggs. For the purposes of this
paper, the term “eggs” also includes the intermediate stages,
such as larvae and pupae. Therefore, the population densities
are divided into the compartments described in Table 1.

We first write down themodel equations and then explain
the meanings of their terms. The model equations are

𝑑𝑆
𝐻

𝑑𝑡
= −𝑎𝑏𝐼

𝑀

𝑆
𝐻

𝑁
𝐻

− 𝜇
𝐻
𝑆
𝐻
+ 𝑟
𝐻
𝑁
𝐻
(1 −

𝑁
𝐻

𝜅
𝐻

)

+ 𝜎
𝐻
𝑅
𝐻
+ 𝜃
𝐻
𝐼
𝐻
,

𝑑𝐿
𝐻

𝑑𝑡
= 𝑎𝑏𝐼
𝑀

𝑆
𝐻

𝑁
𝐻

− (𝜇
𝐻
+ 𝛿
𝐻
) 𝐿
𝐻
,

𝑑𝐼
𝐻

𝑑𝑡
= 𝛿
𝐻
𝐿
𝐻
− (𝜇
𝐻
+ 𝛼
𝐻
+ 𝛾
𝐻
+ 𝜃
𝐻
) 𝐼
𝐻
,

𝑑𝑅
𝐻

𝑑𝑡
= 𝛾
𝐻
𝐼
𝐻
− 𝜇
𝐻
𝑅
𝐻
− 𝜎
𝐻
𝑅
𝐻
,

𝑑𝑆
𝑀

𝑑𝑡
= 𝑝𝑐
𝑆 (𝑡) 𝑆𝐸 − 𝜇𝑀𝑆𝑀 − 𝑎𝑐𝑆𝑀

𝐼
𝐻

𝑁
𝐻

,

𝑑𝐿
𝑀

𝑑𝑡
= 𝑎𝑐𝑆

𝑀

𝐼
𝐻

𝑁
𝐻

− 𝛾
𝑀
𝐿
𝑀
− 𝜇
𝑀
𝐿
𝑀
,

𝑑𝐼
𝑀

𝑑𝑡
= 𝛾
𝑀
𝐿
𝑀
− 𝜇
𝑀
𝐼
𝑀
+ 𝑝𝑐
𝑆 (𝑡) 𝐼𝐸,

𝑑𝑆
𝐸

𝑑𝑡
= [𝑟
𝑀
𝑆
𝑀
+ (1 − 𝑔) 𝑟

𝑀
(𝐼
𝑀
+ 𝐿
𝑀
)]

× (1 −
(𝑆
𝐸
+ 𝐼
𝐸
)

𝜅
𝐸

) − 𝜇
𝐸
𝑆
𝐸
− 𝑝𝑐
𝑆 (𝑡) 𝑆𝐸,

𝑑𝐼
𝐸

𝑑𝑡
= [𝑔𝑟
𝑀
(𝐼
𝑀
+ 𝐿
𝑀
)] (1 −

(𝑆
𝐸
+ 𝐼
𝐸
)

𝜅
𝐸

)

− 𝜇
𝐸
𝐼
𝐸
− 𝑝𝑐
𝑆 (𝑡) 𝐼𝐸,

where

𝑁
𝐻
= 𝑆
𝐻
+ 𝐿
𝐻
+ 𝐼
𝐻
+ 𝑅
𝐻
,

𝑁
𝑀
= 𝑆
𝑀
+ 𝐿
𝑀
+ 𝐼
𝑀
,

𝑁
𝐸
= 𝑆
𝐸
+ 𝐼
𝐸

(1)

and 𝑐
𝑆
(𝑡) = (𝑑

1
− 𝑑
2
sin(2𝜋𝑓𝑡 + 𝜙)) is a factor mimicking

seasonal influences in the mosquito population [5, 24]. The
seasonal influence was considered in another paper [21]. In
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Table 2: Model’s parameters and their biological significance.

Parameter Biological meaning
a Average daily rate of biting (see text)
b Fraction of bites actually infective to humans
𝜎
𝐻

Loss of immunity rate
𝛿
𝐻

Latency rate in humans
𝜃
𝐻

Loss of infectiousness in humans
𝜇
𝐻

Human natural mortality rate
𝑟
𝐻

Birth rate of humans
𝜅
𝐻

Carrying capacity of humans
𝛼
𝐻

Disease mortality in humans
𝛾
𝐻

Human recovery rate
p Hatching rate of susceptible eggs
𝛾
𝑀

Latency rate in mosquitoes
𝜇
𝑀

Natural mortality rate of mosquitoes
𝑟
𝑀

Oviposition rate
g Proportion of infected eggs
𝜅
𝐸

Carrying capacity of eggs
𝜇
𝐸

Natural mortality rate of eggs
c Fraction of bites actually infective to mosquitoes
𝑐
𝑆

Climatic factor

this paper, however, as a first approximation, which is very
good in some tropical areas, 𝑐

𝑠
(𝑡) = 𝑐

𝑠
= constant.

Remark 1. As mentioned above, seasonal influence in the
mosquito population was not considered in this paper. The
reason for this is that including seasonal variation, that
is, considering 𝑐

𝑠
(𝑡) ̸= constant, implies additional analytical

difficulties (see, e.g., [25–27]). In most tropical regions, the
mosquito population varies very little along the year [28],
and, therefore, this additional complication is unnecessary.
Furthermore, at least for part of the year, the equilibrium
is reached even when seasonality is important. Also, in this
paper, we want to make a comparison of the maximum
prevalence attained at endemic equilibrium among various
vector-transmitted diseases. As explained in the Introduc-
tion, endemic equilibrium is important to help public health
authorities to plan and control such diseases and to bet-
ter understand the enormous differences in prevalence of
distinct vector-borne diseases like the observed equilibrium
prevalence of malaria as compared to dengue.

The model’s parameters are described in Table 2.
Let us explain the meaning and limitations of the above

model. First, as mentioned, the variables are densities, that is,
number of humans/vectors per unit area.Therefore, to use the
model as it is written above, we should consider an areawhere
the populations are approximately homogenously distributed
and multiply each variable by this area. One particular
important point is raised by the term 𝑎𝑏𝐼

𝑀
(𝑆
𝐻
/𝑁
𝐻
).

Let us explain the meaning of this term. The parameter
𝑎 is a composed quantity. Let 𝐴 be the area explored by
a mosquito by the joint movement of the humans and the
mosquitoes. Let 𝜉 be the number of bites a mosquito inflicts

Table 3: Model’s structure as a function of the parameters.

Model’s structure 𝛿
𝐻

𝛾
𝐻

𝜎
𝐻

𝜃
𝐻

SI →∞ 0 0 0

SIS →∞ 0 0 ̸=0
SIR →∞ ̸=0 0 0

SIRS →∞ ̸=0 ̸=0 0

SEIR ̸=0 ̸=0 0 0

SEIRS ̸=0 ̸=0 ̸=0 0

per unit time and per unit area in the humans. Then, 𝜉𝐴𝐼
𝑀
is

the number of bites that 𝐴𝐼
𝑀

infected mosquitoes inflict on
𝑁
𝐻
𝐴 people. Hence, the fraction of bites given on susceptible

humans is 𝜉𝐴𝐼
𝑀
(𝑆
𝐻
𝐴/𝑁
𝐻
𝐴) = 𝑎𝐼

𝑀
(𝑆
𝐻
/𝑁
𝐻
), where 𝑎 = 𝜉𝐴.

Therefore, the number of susceptible humans that get
the infection per unit time from infected mosquitoes is
𝑎𝑏𝐼
𝑀
(𝑆
𝐻
/𝑁
𝐻
), where 𝑏 is the probability that a bite from an

infected mosquito results in an infected (latent) human.
Analogously, the term 𝑎𝑐(𝐼

𝐻
/𝑁
𝐻
)𝑆
𝑀
represents the den-

sity of new infections per unit time in mosquitoes due to
mosquitoes’ bites on infective humans.

The term 𝑟
𝐻
𝑁
𝐻
(1−𝑁

𝐻
/𝐾
𝐻
), where 𝑟

𝐻
is the Malthusian

parameter and 𝐾
𝐻

is the carrying capacity, represents the
birth rate per unit area. We assume that all the individuals
are born susceptible.

The terms

[𝑟
𝑀
𝑆
𝑀
+ (1 − 𝑔) 𝑟

𝑀
(𝐼
𝑀
+ 𝐿
𝑀
)] (1 −

(𝑆
𝐸
+ 𝐼
𝐸
)

𝜅
𝐸

) ,

[𝑔𝑟
𝑀
(𝐼
𝑀
+ 𝐿
𝑀
)] (1 −

(𝑆
𝐸
+ 𝐼
𝐸
)

𝜅
𝐸

)

(2)

represent the birth rate per unit area of susceptible and
infected eggs, respectively. Note that we assume that eggs can
be born infected, a phenomenon called vertical transmission
in the literature.

The term 𝑝𝑐
𝑠
(𝑡)𝑆
𝐸
represents the number of noninfected

eggs per unit time per unit area that reaches the adult stage.
The parameter 𝑐

𝑠
(𝑡)was introduced tomimic seasonality and,

asmentioned before, in this paper is made constant.The term
𝑝𝑐
𝑠
(𝑡)𝐼
𝐸
represents the number of infected eggs per unit time

per unit area that reaches the infected adult stage.
The other terms are transition terms between the com-

partments as explained, for example, in [22].
Model (1) is a very general model for some known vector-

borne infections.Therefore, depending on the values of some
parameters, the model can describe any type of dynamics in
the human subpopulation, such as that seen in Table 3.

The model can also include vaccination, for instance,
against yellow fever or dengue, but this subject will not be
treated in this work.

From system (1), it is possible to determine the equilib-
rium densities of the variables of interest. We carried out
detailed equilibrium analysis in a related article [18]. For our
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purposes, we calculate the equilibrium densities of 𝐼∗
𝑀
, the

number of infected mosquitoes:

𝐼
∗

𝑀
= (𝛿
𝐻
+ 𝜇
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+ 𝛼
𝐻
+ 𝜎
𝐻
) 𝐼
∗

𝐻

× (𝑎𝑏𝛿
𝐻

×(1−(
(𝜇
𝐻
+𝜎
𝐻
)(𝜇
𝐻
+𝛾
𝐻
+𝛼
𝐻
+𝛿
𝐻
+𝜃
𝐻
)+𝛾
𝐻
𝛿
𝐻

𝛿
𝐻
(𝜇
𝐻
+𝜎
𝐻
)

)

×
𝐼
∗

𝐻

𝑁
∗

𝐻

))

−1

.

(3)

Replacing the values of 𝐼∗
𝐻
and𝑁∗

𝐻
given in (3), it is possible

to see that 𝐼∗
𝑀

increases with the biting rate 𝑎, as shown in
Figure 1.

The expressions for 𝐼∗
𝐻
and 𝑁

∗

𝐻
, in terms of the model’s

parameters, that appear in (3) are

𝐼
∗

𝐻

𝑁
∗

𝐻

=
(𝛾
𝑀
+ 𝑔𝜇
𝑀
) 𝑎
2
𝑏𝑐 (𝑁

∗

𝑀
/𝑁
∗

𝐻
)−𝑄 (𝜇

𝑀
+ 𝛾
𝑀
) 𝜇
𝑀
(1 − 𝑔)

(𝛾
𝑀
+ 𝑔𝜇
𝑀
) 𝑎2𝑏𝑐𝛿

𝐻
(𝑁
∗

𝑀
/𝑁
∗

𝐻
) 𝑍+𝑎𝑐𝑄 (𝜇

𝑀
+𝛾
𝑀
)

,

(4)

which is the equilibrium prevalence of the infection in
humans and where

𝑄 = (
(𝜇
𝐻
+ 𝜎
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+ 𝛼
𝐻
+ 𝛿
𝐻
+ 𝜃
𝐻
) + 𝛾
𝐻
𝛿
𝐻

𝛿
𝐻
(𝜇
𝐻
+ 𝜎
𝐻
)

) ,

𝑍 = [
((𝛿
𝐻
+ 𝜇
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+ 𝛼
𝐻
+ 𝜎
𝐻
))

𝛿
𝐻

] ,

𝑁
∗

𝑀
=
𝑝𝑐
𝑆

𝜇
𝑀

𝜅
𝐸
[1 −

(𝜇
𝑀
) (𝜇
𝐸
+ 𝑝𝑐
𝑆
)

𝑟
𝑀
𝑝𝑐
𝑆

] .

(5)

The calculation of the total human population expression
at equilibrium, 𝑁∗

𝐻
, is slightly more complicated and results

in

𝑁
∗

𝐻
=
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
, (6)

where

𝐴 = 𝑎𝑐𝑟
𝐻
Ω,

𝐵 = −𝑎𝑐Ω𝜅
𝐻
(𝑟
𝐻
− 𝜇
𝐻
) + Γ𝑍𝑟

𝐻
− Ω𝜇
𝑀
(1 − 𝑔) 𝛼

𝐻
𝜅
𝐻
,

𝐶 = −Γ𝜅
𝐻
(𝑟
𝐻
− 𝜇
𝐻
) 𝑍 + Γ𝛼

𝐻
𝜅
𝐻
,

Ω = 𝑄 (𝛾
𝑀
+ 𝜇
𝑀
) ,

Γ = (𝛾
𝑀
+ 𝑔𝜇
𝑀
) 𝑎
2
𝑏𝑐𝛿
𝐻
𝑁
∗

𝑀
.

(7)

From (4), it is possible to deduce the expression of the
basic reproduction number of model (1) as [22, 29, 30]

𝑅
0
= (𝛾
𝑀
+ 𝑔𝜇
𝑀
) 𝑎
2
𝑏𝑐
𝑁
𝑀 (0)

𝑁
𝐻 (0)

× (
(𝜇
𝐻
+ 𝜎
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+ 𝛼
𝐻
+ 𝛿
𝐻
+ 𝜃
𝐻
) + 𝛾
𝐻
𝛿
𝐻

𝛿
𝐻
(𝜇
𝐻
+ 𝜎
𝐻
)

× (𝜇
𝑀
+ 𝛾
𝑀
) 𝜇
𝑀
(1 − 𝑔))

−1

,

(8)

where 𝑁
𝑀
(0) and 𝑁

𝐻
(0) are the population of vectors and

hosts calculated in the absence of the infection.
Figure 1 is a plot of (3) as a function of the biting rate, 𝑎,

calculated in two ways: in the red dotted line the number of
infected vectors is calculated with the host prevalence 𝐼∗

𝐻
/𝑁
∗

𝐻

directly derived from the dynamics of system (1); in the blue
dashed line 𝐼∗

𝐻
/𝑁
∗

𝐻
is calculated from (4) and for 𝑎 such that

𝑅
0
can be less than one and, therefore, 𝐼∗

𝐻
/𝑁
∗

𝐻
< 0.

Note that, as expected, the number of infected vectors is
a monotonically increasing function of the biting rate.

The force of infection (the incidence density rate) for
humans at the equilibrium, 𝜆∗

𝐻
, is defined as

𝜆
∗

𝐻
= 𝑎𝑏

𝐼
∗

𝑀

𝑁
∗

𝐻

, (9)

which can be explicitly written in terms of the equilibrium
prevalence of the infection in humans (3) as

𝜆
∗

𝐻
= (𝛿
𝐻
+ 𝜇
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+ 𝛼
𝐻
+ 𝜎
𝐻
)
𝐼
∗

𝐻

𝑁
∗

𝐻

× (𝛿
𝐻
× (1

−(
(𝜇
𝐻
+𝜎
𝐻
) (𝜇
𝐻
+𝛾
𝐻
+𝛼
𝐻
+𝛿
𝐻
+𝜃
𝐻
)+𝛾
𝐻
𝛿
𝐻

𝛿
𝐻
(𝜇
𝐻
+ 𝜎
𝐻
)

)

×
𝐼
∗

𝐻

𝑁
∗

𝐻

))

−1

.

(10)

From (10), it can be seen that the equilibrium prevalence of
infection among humans, 𝐼∗

𝐻
/𝑁
∗

𝐻
, is less than a certain value:

(
𝐼
∗

𝐻

𝑁
∗

𝐻

)

<
𝛿
𝐻
(𝜇
𝐻
+𝜎
𝐻
)

(𝜇
𝐻
+𝜎
𝐻
) (𝜇
𝐻
+ 𝛾
𝐻
+𝛼
𝐻
+𝛿
𝐻
+𝜃
𝐻
)+𝛾
𝐻
𝛿
𝐻

.

(11)

Hence, depending on the disease, the model’s structure
will determine whether the maximum equilibrium preva-
lence

(
𝐼
∗

𝐻

𝑁
∗

𝐻

)

MAX
=

𝛿
𝐻
(𝜇
𝐻
+𝜎
𝐻
)

(𝜇
𝐻
+𝜎
𝐻
) (𝜇
𝐻
+𝛾
𝐻
+𝛼
𝐻
+𝛿
𝐻
+𝜃
𝐻
)+𝛾
𝐻
𝛿
𝐻

(12)
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Figure 1: Plot of 𝐼∗
𝑀
(3) as a function of the biting rate, 𝑎, calculated

in two ways: (a) the red dotted line shows the number of infected
vectors calculated with the host prevalence 𝐼∗

𝐻
/𝑁
∗

𝐻
directly derived

from the numerical solution of the dynamics of system (1); (b) the
blue dashed line shows the number of infected vectors calculated
with the host prevalence 𝐼∗

𝐻
/𝑁
∗

𝐻
derived from (4). For 𝑎 such that

𝑅
0
is less than one, we have 𝐼∗

𝐻
/𝑁
∗

𝐻
< 0. For 𝑎 such that 𝑅

0
is greater

than one, the two curves coincide.

is large or small. For instance, in a SEIRmodel such as dengue,
where the recovery rate, 𝛾

𝐻
, is large relatively to the human

mortality rate, 𝜇
𝐻
, the maximum equilibrium prevalence of

the infection in humans is very low. Figure 2 exemplifies
some theoretical vector-borne infections and theirmaximum
equilibrium prevalence in humans as a function of the
recovery rate, 𝛾

𝐻
, and the rate of loss of immune protection,

𝜎
𝐻
.
Let us illustrate the theory above by comparing two very

distinct vector-borne infections, namely,malaria and dengue.
In Table 4 we show the typical values of the key parameters
that determine the maximum equilibrium prevalence for
both malaria and dengue, as in (11).

By applying the parameters’ values above to (12) we end
upwithmaximumequilibriumprevalences of 31% formalaria
and 0.02% for dengue, which are in accord with typical
prevalences found in endemic places for both diseases. A
summary of the sensitivity analysis of the model is presented
in the Appendix. This sensitivity analysis was carried out on
the parameters that are related to dengue control.

Finally, a comment on an important aspect of (8) for
the basic reproduction number, 𝑅

0
. This expression has a

discontinuity when 𝑔 = 1; that is, when 100% of the
eggs are laid infected. This is a theoretical possibility and
when 𝑔 → 1, there is a structural change in our model.
The populations of susceptible and infected eggs become
completely decoupled. It can be verified that the disease is
able to sustain itself even without human hosts. As a matter
of fact, as previously demonstrated [31], this is the only way
the infection circulates exclusively among vectors without the
hosts.

In addition, when 𝑔 = 1 and the human hosts are
introduced into the system, then since all the eggs of infected

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.02

0.04

0
0 0.05

0.1

0.1 0.15 0.2

Prevalence upper bound
1

Humans recovery rate, 𝛾H (days−1)

Lo
ss

 o
f p

ro
te

ct
io

n 
ra

te
,𝜎

H
(d

ay
s−
1
)

Figure 2: Some theoretical vector-borne infections and their max-
imum equilibrium prevalences in humans as a function of the
recovery rate, 𝛾

𝐻
, and the rate of loss of immune protection, 𝜎

𝐻
.The

values of the other parameters are: 𝜇
𝐻
= 4.57×10

−5 days−1, 𝛿
𝐻
= 0.1

days−1, 𝛼
𝐻
= 0.01 days−1, and 𝜃

𝐻
= 0.

mosquitoes are infected, the time evolution leads to a sit-
uation where all mosquitoes are infected. Therefore, when
𝑔 = 1 and human hosts are introduced, the population of
susceptible mosquitoes and eggs goes to zero. In any case,
there is no known infection that is 100% transmitted to
mosquitoes’ eggs.

3. Discussion

Since the seminal work byRonaldRoss,mathematicalmodels
have provided a great deal of theoretical support for under-
standing the complex dynamics of vector-borne infections,
in addition to the important role those models have played in
designing and assessing control strategies [32]. Key concepts
like the basic reproduction number, vectorial capacity and
the force of infection derived from the theoretical works on
vector-borne infections are currently central to the quantifi-
cation of transmission, as well as to the proposal of public
health measures to control them [22].

In this work, we propose a general, although very sketchy,
model that considers a great deal of the aspects related to
the dynamics of mosquito-borne microparasites. From the
equilibrium analysis, we calculated the prevalence of the
infection in the host populations, from which the number
of infected vectors was deduced. In addition, we deduced
an explicit expression for the basic reproduction number
and the equilibrium force of infection. It was possible then
to demonstrate that, provided an equilibrium is reached,
each mosquito-borne microparasite has a maximum host
prevalence, depending on the disease’s structure and on the
value of the parameters. This analysis was exemplified by
the calculation of the maximum equilibrium prevalence of
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Table 4: Parameters’ values that determine the maximum equilib-
rium prevalences of Malaria and Dengue.

Parameter Malaria Dengue
𝜎
𝐻

0.10 days−1 0.00 days−1

𝛿
𝐻

0.07 days−1 0.14 days−1

𝜃
𝐻

0.00 days−1 0.00 days−1

𝜇
𝐻

4.57 × 10
−5 days−1 4.57 × 10

−5 days−1

𝛼
𝐻

10−3 days−1 10−5 days−1

𝛾
𝐻

0.14 days−1 0.20 days−1

malaria and dengue. Once the disease’s structure is deter-
mined and the values of the parameters are known, it is
possible to calculate the maximum equilibrium prevalence of
a mosquito-borne microparasitic infection.

It may be argued that malaria is not exactly a good exam-
ple of a microparasitic infection. However, although malaria
can behave sometimes as a microparasite and sometimes as
a macroparasite [33], in the specific context of the proposed
model, it can be considered as a microparasitic disease.

Another important limitation of our approach is that, in
order to calculate the equilibrium densities of each of the
model’s variables, we have to neglect seasonal fluctuations,
which can be very important in the transmission dynamics
of such infections like dengue. However, seasonality in some
tropical areas is not too important and the results can be
applied to the average trend in prevalence levels.

At first inspection, (3) may seem odd because the biting
rate appears in the denominator and the number of infected
mosquitoes should be directly proportional to that rate.
However, if we write (3) as a function of the parameters
only, that is, by writing the human prevalence term 𝐼

∗

𝐻
/𝑁
∗

𝐻
as

an explicit function of the model’s parameters, it is possible
to see that the number of infected mosquitoes is indeed a
monotonically growing function of the biting rate, as shown
in Figure 1. We do not show this full equation because it is
awkwardly big.

The calculation of a maximum value of equilibrium
prevalence for a mosquito-borne microparasitic infection
may help public health authorities to estimate the resources
needed to care for the infected individuals, anticipating the
importance of the disease and increasing the public health
preparedness to deal with such a challenge.

Appendix

Sensitivity Analysis to Some Parameters
Related to Control

In this appendix, we present a summary of the sensitivity
analysis (explored in detail in [18]) of the equilibrium results
to some parameters related to control for the case of dengue.
The analyzed variables are the basic reproductive number, the
force of infection (incidence density), and prevalence. The
parameters are the biting rate, 𝑎; the immature stages carrying
capacity, 𝜅

𝐸
; the mortality rate of the larvae, 𝜇

𝐸
; and the

mosquitomortality rate, 𝜇
𝑀
.These parameters correspond to

Table 5: Results of the sensitivity analysis. The results represent the
relative amount of variation (expressed in percentual variation) in
the variable if we vary the parameters by 1% (see [18] for details).

Parameter Mean
Sensitivity of 𝑅

0
to the control parameters

𝑎 1.94
𝜅
𝐸

0.69
𝜇
𝐸

(−) 8.28 × 10−4

𝜇
𝑀

(−) 2.42
Sensitivity of 𝜆 to the control parameters

𝑎 5.02
𝜅
𝐸

2.32
𝜇
𝐸

(−) 1.93 × 10−3

𝜇
𝑀

(−) 5.40
Sensitivity of 𝐼

𝐻
/𝑁
𝐻
to the control parameters

𝑎 2.67
𝜅
𝐸

1.34
𝜇
𝐸

(−) 2.31 × 10−2

𝜇
𝑀

(−) 3.20

the actual control strategies available. The results are shown
in Table 5.
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