

Anatomy of an International Exchange Point: Distributed

Network Monitoring Using MonALISA and NetFlow1

Ernesto Rubi, Xun Su, Iosif Legrand, Heidi Alvarez, Julio Ibarra2

Abstract: In this paper we present a distributed network monitoring system, which exploits MonALISA
(Monitoring Agents in A Large Integrated Services Architecture), a distributed web service delivery
infrastructure designed to collect and process the network monitoring information. We augment the
capability of MonALISA with FlowTools, the popular NetFlow data analysis toolset. We demonstrate how
to integrate MonALISA and Flowtools via an UDP-listening agent ApMon, and highlight a case study of
AMPATH, an international exchanging point located in Miami and serving a number of South American
National Reseach and Education Networks (NRENs). Our experience showcases the elegant design
philosophy of a scalable distributed service deployment platform coupled with the open-source traffic
analysis tools and its impact on the daily operation of the production networks.

Keywords: NetFlow, MonALISA, Flowtools, Network monitoring.

1. Introduction

As the Internet expands both in its scope, reach and capacity, it becomes evident that there is a strong need
to develop a distributed network monitoring infrastructure that can be scaled to support various network
topology, traffic granularity and user applications. NetFlow[1] is a widely deployed router-based traffic
monitoring mechanism. FlowTools[2] is a open-source NetFlow analysis toolset underlying the data
gathering and analysis infrastructure of our project. It is our main motivation to effectively use NetFlow to
gain crucial understanding of the traffic characteristics of the networks we operate. In particular, we are
interested in understanding how to exploit the key advantages and avoid drawbacks of NetFlow-based
traffic analysis by augmenting it with a distributed service-deployment platform. Indeed the focus of our
work is to integrate MonALISA[3], a distributed monitoring system based on JINI/JAVA and
WSDL/SOAP technologies. MonALISA’s flexibility as a framework to gather, store and distribute network
data collected was crucial to the success of our investigation and it shall become apparent throughout the
course of this paper. The MonALISA framework provides a distributed monitoring service that not only is
closely integrated with our monitoring and data distribution philosophy but also acts as a dynamic service
system. The goal is to provide the monitoring information from large and distributed systems in a flexible
and self-describing way as part of a loosely coupled service architectural model to perform effective
resource utilization in large, heterogeneous distributed centers. A salient feature of the MonALISA
framework lies in its capability to integrate existing monitoring tools and procedures to collect parameters
related to computational nodes, storage devices and network performance. A critical part to the research
that we undertook is to integrate the parsed NetFlow data into a MonALISA which would make available
the information in a distributed manner through mobile service agents. We will incorporate real-time as
well as historical information in our system to improve the understanding of the traffic statistics data from
the networks being monitored.

A significant part of the paper is dedicated to the use of our system to analyze network traffic behavior
across a real-world production network, AMPATH. The AMericasPATH (AMPATH) network is an FIU
project sponsored in part by the US National Science Foundation CISE directorate, in collaboration with

1This work is supported by National Science Foundation’s Strategic Technologies for the Internet (STI): Research
Experience for Undergraduates Award No. 331112 and a Cisco Systems University Research Program (URP) grant.

2 Xun Su (xsu@hep.caltech.edu) and Iosif Legrand (Iosif.Legrand@cern.ch) are with High Energy Physics
Department, California Institute of Technology, Pasadena, CA. Jose Hernandez (josef@fiu.edu), Ernesto Rubi
(ernesto@cs.fiu.edu), Heidi Alvarez (heidi@fiu.edu) and Julio Ibarra (Julio@fiu.edu) are with Center for Internet
Augmented Research & Assessment, Florida International University, Miami, FL.

Global Crossing and other telecommunications product and service providers. Using Global Crossing’s
terrestrial and submarine optical-fiber networks, AMPATH is interconnecting the research and education
networks in South and Central America and the Caribbean to US and non-US research and education
networks via Internet2’s Abilene network. The purpose of the AMPATH project is to allow participating
countries to contribute to the research and development of applications for the advancement of Internet
technologies. The mission of AMPATH is to serve as the pathway for Research and Education networking
in the Americas and to the world and to be the International Exchange Point for Latin America and the
Caribbean research and education networks. Additionally AMPATH fosters collaboration for educational
outreach to underserved populations both in the US and abroad. The AMPATH pathway serves as the
bridge between Central and South American National Research Networks (NRENs) and the world’s
research and education networks. With the multiplicity of complex networked systems and educational
activities served by AMPATH’s wide-ranging infrastructure a strong demand for high availability and
engineering collaboration arises, which is met through the use of various monitoring agents to provide a
strong factual foundation to troubleshooting. Likewise, deciphering the everyday activities of our peers is
achieved with a distributed approach to data gathering and dissemination.

2. Anatomy of an international exchange point

Figure 1 demonstrates AMPATH’s current design, IP addresses as well as Autonomous System Numbers
(ASNs) are omitted. We will use simple NREN names to identify our international peers.3 It is this network
that served as the backdrop for our study. Two core routers exist: a Cisco GSR 12012 as well as a Juniper
M10, both routers have NetFlow accounting enabled and are designed to export this data to a collection
workstation.

Figure 1: AMPATH schematic architecture.

3 For more detailed information please visit http://mrtg.ampath.net.

3. NetFlow and Flowtools

NetFlow was originally developed as a switching path and today it is primarily used for network
accounting. Flow records are generated and exported by a router. Each flow record contains information
about all packets that are categorized to have the same combination of the following IP header fields:

• Source IP address
• Destination IP address
• Source port
• Destination port
• Layer 3 protocal type
• TOS byte
• Input logical interface

NetFlow records only unidirectional traffic in-bound to any interface on the router. Note however, even
though this traffic is unidirectional NetFlow accounts for all traffic going in and out of the router by
recording both transit traffic and traffic destined for the router. By storing only the router’s flow-level
information and neglecting payload it becomes feasible to summarize and “sketch” large amount of data
traffic.

A key technical note is the sampling mode at which the router is running. In the GSR’s case a 1-100
sampling rate is specified. This means that for every 100 packets processed by the forwarding engine or
route processor there will be one packet extracted and reported to the NetFlow process running at the
router. This is the lowest allowed sampling rate on our GSR running NetFlow v5 and clearly we can see
that this causes limitations on the analysis of network data. It is not uncommon to have short host-to-host
sessions where the overall transmission does not exceed 100 packets. It is beyond the scope of this paper to
discuss NetFlow sampling algorithms but based on our experience it is likely that if the transmission is 100
packets or less NetFlow will not account for it. This introduces a margin of error to any analysis of data
flows but especially to those UDP flows transmitted over our core. With their inherent error correction
mechanisms TCP flows are less prone to being ignored by the collection process.

Flow Tools is a collection of programs and libraries used to collect and process NetFlow data. These tools
allow users to process stored flow data from a series of command line interfaces. Commands like flow-
filter and flow-sort allow the user to filter and sort NetFlow data by IP address, port, AS number and any
other parameter present in that data collected. The data is presented on the command line in a table format.
However these tools do not provide a dynamic way of dynamically monitoring flow data. Through the use
of MonALISA we have used NetFlow data collected and processed by Flow Tools to create a graphical
interface by which to view certain characteristics of the Ampath network in a near-real time fashion. For
our analysis we implemented flow-tools version 0.66 on a dual Xeon 2.66 GHz system with a copper
Gigabit Ethernet network connection to FIU’s campus network. The operating system of choice was
Fedora Core 2.

Having discussed the data gathering techniques in the following we focus on the data dissemination
mechanism. For the rationales that we detail in the next section MonALISA is our platform of choice for
this purpose.

4. MonALISA and ApMon

MonALISA (Monitoring Agents in A Large Integrated Services Architecture) is a distributed services
architecture to collect, process and act upon real-time monitoring information. While its initial target field
of application is networks and Grid systems used by the global high energy and nuclear physics
collaborations, MonALISA is broadly applicable to many fields of data intensive science, and to the
monitoring and management of major research and education networks. MonALISA is based on a scalable
dynamic distributed services Architecture, and is implemented in Java using JINI[21]and WSDL[22]

technologies. The scalability of the system derives from the use of a multi-threaded engine to host a variety
of loosely coupled self-describing dynamic services, and the ability of each service to register itself and
then to be discovered and used by other services or clients that require such information. The framework
integrates many existing monitoring tools and procedures to collect parameters describing computational
nodes, applications and network performance. Specialized mobile agents are used in the MonALISA
framework to perform global optimization tasks or help improve the operation of large distributed system
by performing supervising tasks for different applications. MonALISA is currently running around the
clock monitoring several Grids and distributed applications on approximately 150 sites.

The core of the MonALISA monitoring service is based on a modular system design used to perform the
data collection tasks in parallel, independently. The modules used for collecting different sets of
information, or interfacing with other monitoring tools, are dynamically loaded and executed in
independent threads. In order to reduce the load on systems running MonALISA, a dynamic pool of
threads is created once, and the threads are then reused when a task assigned to a thread is completed. This
allows one to run concurrently and independently a large number of monitoring modules, and to
dynamically adapt to the load and the response time of the components in the system. If a monitoring task
fails or hangs due to I/O errors, the other tasks are not delayed or disrupted, since they are executing in
other, independent threads. A dedicated control thread is used to properly stop the threads in case of I/O
errors, and to reschedule those tasks that have not been successfully completed. A priority queue is used for
the tasks that need to be performed periodically.

A schematic view of this mechanism of collecting data is shown in Figure 2. This approach makes it
relatively easy to monitor a large number of heterogeneous nodes with different response times, and at the
same time to handle monitored units that are not responding without affecting other measurements. The
clients, other services or agents can get any real-time or historical data by using a predicate mechanism for
requesting or subscribing to selected measured values. These predicates are based on regular expressions
to match the attribute description of the measured values a client is interested in. They may also be used to
impose additional conditions or constraints for selecting the values. In case of requests for historical data,
the predicates are used to generate SQL queries to the local database. The subscription requests create a
dedicated thread, to serve each client. This thread performs a matching test for all the predicates submitted
by a client with the measured values in the data flow. The same thread is responsible to send the selected
results back to the client as compressed serialized objects. Having an independent thread per client allows
sending the information they need, in a fast and reliable way, and it is not affected by communication errors
which may be occurring at other clients. In case of communication problems these threads will try to
reestablish the connection or to clean up the subscriptions for a client or a service that is no longer active.

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Figure 2: A schematic view of the MonALISA data collection mechanism based on a multi-threaded
engine.

Figure 3: The MonALISA monitoring service for Abilene, shown at a time we injected more than 8
Gigabits/sec.

Figure 3 is a snapshot of the MonALISA monitoring network for Abilene network of the Internet2. It
shows all the active nodes running MonALISA services for this particular “farm”, discovered automatically
by a graphical MonALISA client. The client can display the real time global views and connectivity, as
well as the usage and load of the farms. In this particular instance we captured a highly intensive data
transfer event on June 19th, 2004 where a group of 12 disk servers in CERN concurrently sent TCP traffic
via LHCNet and Abilene to their destinations in Caltech. Note that in this case MonALISA reported a
throughput reaching 8.4 Gbps on the Abilene links from Chicago → Kansas City → Denver → Sunnyvale
→ Los Angeles.

A salient feature of the MonALISA design is its extensibility. It allows user-defined monitoring modules,
specific to user-specified system and network information, to be easily implemented and integrated in the
MonALISA framework. This facilitates the work reported in this paper, as well as our ongoing project to
integrate NLANR PMA[5] real-time packet trace analysis and MonALISA. From a systems point of view,
MonALISA provides scalable architectural support for collecting, visualizing and responding to the
operating conditions of large-scale distributed systems, and it is especially suited for monitoring and
controlling large computing systems and networks used in Grid applications.

ApMon[4] is an Application Programming Interface that facilitates user-specific applications to interact
with the MonALISA services. ApMon allows any application to send parameterized monitoring
information to MonALISA. The data can be sent as UDP packets to multiple hosts running the MonALISA
service.

Through the use of ApMon MonALISA services can receive parameterized data in (name, type, value)
tuples. When transmitting a data point to MonALISA the application specifies the name of the parameter
about to be sent, the type of the parameter (string, object, integer, double) and the actual value of the
parameter. For our implementation we decided to use a 64 bit real number as the type for all of our data
transmissions with ApMon. This type is represented in ApMon by the constant
ApMonConst::XDR_REAL64(). The ApMon module on the MonALISA service will then receive this
data and create any needed fields on its database for new parameters or populate existing fields if a
particular parameter name already exists.

The resulting data stored in MonALISA is a set of parameters and the values of those parameters over time.
MonALISA then provides an interface by which to view one or multiple parameters in a real-time or
historical graph.

5. Integrating MonALISA and FlowTools via ApMon

NetFlow allows for the monitoring of a large number of parameters. For this project we decided to limit
the parameters monitor to the following:

• UDP/TCP port destination/source traffic
• IP destination/source traffic
• IP protocol traffic
• IP Next Hop traffic
• AS destination/source traffic
• Prefix destination/source traffic

For most of these parameters we will be monitoring that total traffic in octets over a period of time. The
initial period of time was 5 minutes. In the flow-capture startup script above the parameter –n288 indicates
that we want flow-capture to generate 288 files per day which results in a new file generated very 5
minutes.

Our application will use the most recent file to retrieve the desired parameters. This will result in
parameterized NetFlow data being retrieved by our application reflecting 5-minute averages for each of the
monitored parameters. Hence the value of each parameter will represent the total number of octets
associated with that particular parameter over a 5-minute period. We will use flow-stat to collect all of the
parameters specified above. Below is a sample output using flow-stat. As we can see for this particular 5-
minute interval the HTTP port (80) was most heavily used at 11274635 octets roughly 10.75 MB.

$ flow-cat ft-v05.2005-01-19.135207-0500 | flow-stat -f 5 -S 2
--- ---- ---- Report Information --- --- ---

Fields: Total
Symbols: Disabled
Sorting: Descending Field 2
Name: UDP/TCP destination port

Args: flow-stat -f 5 -S 2

port flows octets packets

80 42816 11274635 82997
25 2877 3770113 7623
2010 28 2543195 1747
4662 2095 2290946 3770
2009 28 2091493 1413

The application written will parse the flow-stat report and generate a name/value pair which will be sent to
MonaLISA via ApMON. This name will be one of the following: (1) a port number or name; (2) an IP
address; (3) a protocol number or name; (4) an AS number; (5) a Prefix.

The value of the parameter will always be the total number of reported octets for that parameter. This will
generate a large number of parameters which is difficult to visualize. ApMon provides the ability to
classify the parameters submitted to MonALISA by specifying a cluster and a nodename along with the
parameter name/value pairs. A cluster is a group containing a list of nodenames. Each nodename is a
group containing a list of parameters. When submitting data to MonALISA we will define each router
interface as a cluster and the description of the parameters being measured as a nodename within that
cluster. For example the “NWS Internet2” interface in the Juniper router will be consider a cluster (named
Junipter – NWS Internet2) and it will contain the following nodenames: “Egress Destination IP”, “Egress
Destination AS”, “Egress Source Ports UDP/TCP”, etc. Each nodename will contain the actual parameter

name/value pairs. In order to give the user the flexibility to specify what values to monitor and how to
classify them in MonALISA a configuration files was create for our application. Below is a description of
the allowed settings in the configuration file.

Setting Name Description Example
cluster_name: The description of the interface GSR-StarLight VLAN
node_name: The description of the parameter being

monitored
Ingress Destination Ports

flow_file_directory: Path to the directory containing the NetFlow
files

/home/netflow/flows/gsr/

flow_stat_options: Options passed directly to flow-stat -f 5 –S 2 –n
flow_filter_options: Options passed directly to flow-filter -i 60
value_param: The column number from the flow-stat report

which will be used as the value for the
parameter. Where the first column number is
0.

2

max_params: The maximum number of name/value pairs
which will be processes and transmitted to
MonALISA for this nodename.

15

Next End of the nodename’s configuration.

Our application would parse this information and generate the following report:

$flow-cat ft-v05.2005-01-19.224516-0500 | flow-filter -i 60 |
flow-stat -f 5 -S 2 -n
--- ---- ---- Report Information --- --- ---

Fields: Total
Symbols: Enabled
Sorting: Descending Field 2
Name: UDP/TCP destination port

Args: flow-stat -f 5 -S 2 -n

port flows octets packets

57893 1 913876 1106
32808 1 730500 487
6881 52 210301 283
32920 1 151132 101
32918 1 85132 57
1144 3 84854 61
http 39 68171 106
1279 1 67500 45
eDonkey-20 67 64742 107
3113 2 63044 49
33498 3 58552 40

The application will parse the generated report and retrieve the parameters name and values as specified in
the configuration. For this example the parameter names will be the port numbers and the values will be
the octets as specified by the configuration file (value_param:2). The following data would then be sent to
MonALISA:

Cluster Nodename Parameter

Name
Parameter
Value

GSR-StartLight VLAN Ingress Destination Ports 57893 913876
GSR-StartLight VLAN Ingress Destination Ports 32808 151132
...
GSR-StartLight VLAN Ingress Destination Ports http 68171
...

6. Case Study– Monitoring Peer Traffic

In this section we demonstrate the use of our monitoring system in practice. We choose to examine a peer,
the NWS Internet2 Gigabit Ethernet link that carries all HPC traffic to and from New World Symphony
(NWS), a post-doctorate institution at Miami Beach that has AMPATH be its upstream provider of
Internet2 traffic as well as commodity internet.

Once monALISA starts4 the screen presented in Figure 4 is a global view of all running sites / farms. With
a properly established working group under MonALISA we choose a more detailed view from the left
menu shown in Figure 5. The “TabPan” view gives detailed information about the monALISA farm but
also serves as the starting point to access parameters that are unique to the site.

Figure 4 - MonALISA startup screen with 'test' group defined.

4 This requires Java to be installed.

Figure 5 - MonALISA farm overview: note the MonALISA service I2Monitor that we started

In Figure 5 we are presented with a snapshot of the current state of the MonALISA group “test”. The
MonALISA service that pertains to our particular study is titled I2Monitor. Choosing the I2Monitor farm,
we are then presented with the AMPATH specific data which we have chosen to integrate into our analysis,
as shown in Figure 6.

Figure 6 – AMPATH Farm specific data

It is evident which parameters we have specified to be monitored. Two core routers (a Cisco GSR and a
Juniper M10) are monitored. As an example we will analyze the Juniper – NWS Internet2, as shown in
Figure 7.

Figure 7 - Traffic parameters studied in this paper

In Figure 8 by choosing Egress Source AS we view the current set of stored AS numbers belonging to
flows leaving our Juniper router and destined to the New World Symphony network. With the
“Parameters” corresponding to the AS numbers traversing our router destined to NWS we have a clear top-
level view of flows of the network, and we can delve deeper into this data by showing a realtime plot or
history plot of the AS data gathered. This is given in Figure 9.

Figure 8 - ASNs traversing AMPATH towards NWS

Figure 9 - ASN traffic destined to NWS

In Figure 10 we show the protocols of the traffic traversing the GSR router, the main provider of Internet2
to AMPATH IXP peers. We now drill down through the GSR Aggregate data to show the IP Protocols
currently being recorded by the NetFlow process on the router. A historical look can show the recent or
long-term utilization of IPv6; and we can visualize it by means of a history plot in Figure 11. We can
quickly note that IPv6 data has not been a significant load on AMPATH during the time period specified.

Figure 10 - Router Aggregate NetFlow data

Figure 11 – Two-hour snapshot of IPv6 data traversing AMPATH

8. Discussions and Future works

NetFlow data contains a rich amount of network information with a multitude of applications. Through the
use of the distributed monitoring environment provided by MonALISA and the reporting flexibility
embedded in the FlowTools API it is possible to encapsulate and summary this data in visually friendly
manner. In doing saw were able to create dynamic and real time views of the AMPATH Internet 2 network
traffic and its behaviors. Direct application of this technology could be used to further understand network
traffic behavior and trends in complex research networks.

The traffic views generated by MonALISA and the NetFlow application focused on the “top talking” flows.
That is MonALISA only received the top x talking flows for a particular period of time. We saw that this
technique produced a seemingly random setup of results. Further study should be made to understand this
trend and determine its inherent properties.

One further technology that we intended to explore was that of the National Laboratory for Applied
Network Research (NLANR) PMA (Passive Monitoring Agent) [5]. There are key differences between
PMA data and NetFlow data worthy of serious research effort. With our results we hope to provide a stable
platform from which networks of varying degrees can be closely monitored, their traffic patterns clearly
identified and the appropriate decisions taken to rectify issues which negatively impact performance or
augment those which have a positive impact on the delivery of service to an end user.

References:

1. NetFlow Services Solution Guide, Cisco Systems Inc.
2. FlowTools: http://www.splintered.net/sw/flow-tools/.
3. MonALISA: http://monalisa.caltech.edu.
4. ApMon: http://monalisa.caltech.edu.
5. PMA: http://moat.nlanr.net

