
An Experimental System for Grid Meta-Broker Evaluation 
Yanbin Liu 

Norman Bobroff 
Liana Fong  

Seetharami Seelam 
IBM T. J. Watson Research, 

Hawthorne, NY, USA 

{ygliu, bobroff, llfong, 
sseelam}@us.ibm.com 

David Villegas 
S. Masoud Sadjadi 

Florida International University (FIU), 
Miami, Florida, USA 

{dvill013, sadjadi}@cs.fiu.edu 
 

Ivan Rodero 
Technical University of Catalonia and 
Barcelona Supercomputing Center, 

Barcelona, Spain 

irodero@bsc.es 
 
 

 
ABSTRACT 
Grid meta-broker is a key enabler in realizing the full potential of 
inter-operating grid computing systems. A challenge to properly 
evaluate the effectiveness of meta-brokers is the complexity of 
developing a realistic grid experimental environment. In this 
paper, this challenge is addressed by a unique combination of two 
approaches: using reduced workload traces to demonstrate the 
resource matching and scheduling functions of the meta-broker, 
and using emulation to provide a flexible and scalable modeling 
and management for local resources of a grid environment. Real 
workload traces are reduced while preserving their key workload 
characteristics to allow exploration of various dimensions of 
meta-broker functions in reasonable time. Evaluation of round-
robin, queue-length, and utilization based meta-broker scheduling 
algorithms shows that they have different effects on various 
workloads. 

Categories and Subject Descriptors 
C.4. [Computer Systems Organization]: performance of Systems 
– measurement techniques 

General Terms 
Design, experimentation, measurement 

Keywords 
Grid computing, meta-brokering, meta-scheduling, trace, 
emulation, experimental systems 

1. INTRODUCTION 
The Latin American Grid (LA Grid) [1] is a multi-institute 
initiative established for the development of a computer grid that 
serves as a living laboratory for education and collaborative 
research in distributed systems and application areas such as 
bioinformatics, hurricane mitigation, and healthcare [2].  The 
promise of grids like LA Grid consists of making heterogeneous 
resources location transparent and accessible through common 
interfaces and protocols [3]. 

 
Meta-brokers (MB) [4] are key components in realizing this 
vision of the inter-operating compute grid. They enable 
communicating job and resource information between grids using 
command protocols, match and distribute workloads among the 
candidate resources, and assist global optimizations by job routing 
based on appropriate policies and scheduling algorithms.  In 
addition, a meta-broker provides a layer of middleware on top of 
different local resource management systems (LRMSs).  Figure 1 
is an overview of the grid connecting compute clusters at IBM, 
Barcelona Supercomputing Center (BSC), and Florida 
International University (FIU). 
A fundamental challenge in the development of meta-brokering 
function is to validate how the local behavior of the MB and its 
job forwarding algorithms affect job performance in a realistic 
grid environment. Given the large size and heterogeneous nature 
of grid environments, different strategies have been devised 
towards these validation goals. Examples of these strategies are 
small deployments in controlled environments, or the use of 
analytic or simulator models. However, the size of production 
grids such as the Open Science Grid makes small, controlled 
testbeds unrealistic and its heterogeneity, in terms of user 
requests, computing resources and implementations present 
significant challenge for simulators to capture the full behavior of 
all involved components.  
In this paper, we introduce an approach to evaluating the effects 
of MB function based on using actual MBs, and using emulation 
of grid physical resources. We select emulation rather than 
simulation as typical event simulators don't allow the virtual 
resources to be plugged into the existing code.   Additionally, 
emulation re-produces the behavior of a component in the system 
so that externally it appears to behave as the component itself. We 
can replace an emulated component with a real implementation 
without influencing other components in our grid system. 
In particular, as the first contribution of this paper, we provide 
software emulation of the relevant features of the LRMS (Section 
3.1). Our LRMS emulator provides job scheduling on clusters of 
compute nodes whose scale and power are parameters to the 
emulator. This enables experiments with multiple grid 
configurations by 'plugging' LRMS (compute clusters) into the 
MBs domain of control without modifying the MB 
implementation. The MB sees the virtual resources provided by 
the emulator as real ones. This greatly enhances the variety of 
tests that can be performed under different cluster configurations. 
Most importantly, by retaining the real MBs on their actual 
physical networks, it is possible to preserve the large scale 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
LSAP’09, June 10, 2009, Munich, Germany. 
Copyright 2009 ACM  978-1-60558-592-5/09/06...$5.00. 

11



structure of the grid that we use to study various interaction 
hahaviors.  
The second contribution of our approach is to drive the MBs and 
emulated LRMS with realistic job demands in terms of arrival 
rate, execution time, and parallelism, yet be able to complete the 
experiments in reasonable times. To this extent, we use both 
cluster job traces (CTC [14]) and grid job traces (Grid5000 [5]). 
These traces normally execute over long time frame. So we 
introduce a heuristic scaling methodology in Section 3.2 and 
reduce the traces by about a factor of 60 in the arrival rate and 
execution dimensions, while preserving key properties (Section 
4.2) of the original job traces.     
Once our experimental grid platform is introduced in Section 4.1, 
we show how it is used to explore several interesting issues in 
MB-based grids in Section 4.3. We consider several aspects of job 
forwarding at the MB. In one experiment, we consider the relative 
effects of the job forwarding algorithms in the MB between 
round-robin, and the ones that using system metrics such as 
queue-length and node utilization.  

2. BACKGROUND AND RELATED WORK 
Figure 1 shows our LA Grid system with peer-to-peer meta-
brokers connecting the different resource domains.  In each 
domain, local resources are managed by their respective 
management entities (e.g., BSC by eNanos [6], IBM by TDWB 
[7], and FIU by GridWay [8]), while the MBs provide for inter-
operating grid functions so that user workloads submitted by any 
domain may utilize resource from any of the domains dictated by 
policies.  
The peer-to-peer communication protocols supported by the meta-
brokering are: Connection management, which is responsible for 
negotiations among peers and keeping track of active neighbors 
via heartbeats; Resource management, which governs the 
information exchange of resources among peers; Job 
management, which handles job submission from users as well 
as job routing to peers for workload balancing; and Notification 
management, which sends and receives job status notifications to 
registered listening parties. Our previous publication [6] describes 
our verification and experimentation with our protocol design and 
implementation.  

Peer-to-peer

TDWB

IBM-USA

TDWB

IBM-India

IBM

Fork

BSCgrid

BSC

SGE

GCB

Fork

GCBViz

FIU

Meta-
Broker

Meta-
Broker

Meta-
Broker

Peer-to-peer

Peer-to-peer

LL/Fork

CEPBA

MB site

MB instance

LRMS instance

 

Figure 1: Meta-Broker Architecture 

As argued by Iosup et. al. [9] on performance evaluation of grid 
systems, the large size of grids and their heterogeneity make 

realistic analytic modeling hardly tractable. Also, the non-
deterministic and other dynamic behaviors of grid make 
simulation approach less suitable; therefore, performance studies 
using real systems would be an alternative.  For example, real 
meta-brokering systems can provide realistic setup to take 
performance measurements such as the overhead in job routing, 
network latency, etc. While our meta-brokering system is built to 
be a real deployment in the LA Grid consortium to handle 
workload from our partner sites, it is also a living laboratory for 
experimentation of distributed system.  Thus, we need not only to 
collect and analyze performance data to quantify the quality of 
services for our user workloads and the optimal usage of the 
resources contributed by partner institutes, but we desire to use 
our grid system to explore various aspects of performance 
evaluations of meta-brokering functions such as workload to 
resource matching and allocation algorithms.   
However, performance evaluation using real systems has many 
challenges. The complexity of setting and controlling different 
characteristics of real systems is not trivial and often limit the 
flexibility to properly evaluate meta-brokering systems. For 
example, to vary the sizes of resource domains for testing 
brokering matching and allocation algorithms would likely 
require coordination of testing timing and participating 
administrative personnel. To alleviate such complexity and to 
provide the flexibility in varying sizes and types of resources in 
grids, in this paper we introduce an innovative approach in the use 
of emulated resources and their management schemes. The 
concept of using emulated resources and their allocations was also 
previously mentioned in [10] for cluster scheduler evaluation. We 
extend the emulation to multiple grid clusters for the meta-
brokering evaluation of varying characteristics.  
Argued that analytic modeling for grids is hardly tractable, Iosup 
et. al. [9] used simulation methods [11] to evaluate the 
performance of grid systems. Several other research groups also 
developed grid simulation frameworks and published several 
papers evaluating the various aspects of grid scheduling 
algorithms [11,12,13,22]. However, we argue that, due to the non-
deterministic and other dynamic behaviors of grids, these 
simulation systems suffer from similar drawbacks as analytical 
models. As we will show in this paper, performance studies using 
real systems offer insights that are hard to learn from analytical or 
simulation methods.  Our experimental system based on 
emulation is different from these former simulation systems. We 
have real MB (sometimes real LRMS too) instances and emulated 
LRMS deployed in real networks using real time. Our 
components use web services to communicate with each other 
such that we can replace an emulated component with real 
implementation or vice-versa in our system. This gives us a 
benefit to detect problems and evaluate performance in a close to 
reality environment. 
Another challenge in meta-brokering evaluation is the availability 
and selection of realistic workloads.  Iosup et. al. [5] have been 
leading the effort of establishing the availability of traces 
captured from real systems in the Grid Workload Archive (GWA) 
while Parallel Workload (PWA) [14] contains detailed workload 
models, which are based on workload logs collected from large 
scale parallel systems in production use. In [15], the authors 
discussed various challenges in selecting the appropriate 
workloads with particular characteristics for specific performance 

12



evaluations.  Various aspects of real and synthetic workloads used 
in performance studies were also covered in many studies [16,17].    

In our study here, we evaluate our experimental system using two 
job workloads that were constructed based on the characteristics 
of selected real workloads (CTC from PWS, Grid5000 from 
GWA).  We would apply a set of trace reduction techniques to 
real workload traces to allow exploration of various dimensions of 
meta-broker functions in reasonable time. Trace reduction 
techniques have been used by computer architecture designers to 
shorten time for simulations for microprocessor design.  Authors 
in [18] compared the approaches of sampling and reduced input 
sets by using different techniques, such as reduction in 
repetitiveness and input truncation, while maintaining statistical 
similarity to the original input traces. We detail our workload 
selection and trace reduction approach in Section 3.2.    

3. META-BROKER EVALUATION 
PLATFORM 
Figure 2 shows an architectural overview of the prototype meta-
broker evaluation platform used for this paper. Instances of meta-
brokers are deployed at the multiple resource domains. Each 
meta-broker implements the interoperability protocols described 
previously in Section 2. Based on brokering policies and resource 
information exchanged amongst peer brokers, jobs entered to a 
meta-broker are executed locally or routed to remote meta-
brokers.  Each meta-broker interacts with one or more LRMS to 
allocate resources for the jobs. As shown in Figure 2, LRMS can 
be either a real system (e.g., IBM LoadLeveler [19]) managing 
real physical resources and/or an emulated LRMS.  Job traces are 
used to generate job workloads by a job submitter from any client 
site. The functional steps of the experiment are indicated in the 
figure by the labels: (1) Job forwarding to another MB, (2) Job 
submission to a LRMS, and (3) Job submission into the system by 
a user. 

Meta-Broker
(job routing if necessary)

Load Leveler 
(Local Scheduler)

Load Leveler
Adaptor

Physical Resources

Emulator Adaptor
(job/resource management APIs)

Emulator Scheduler
(scheduling strategies, 
job/res assignments)

Emulated Resources
(resource/state DB, 

job execution agents) 

Emulated Resources
(resource/state DB, 

job execution agents) CTC

Job
Trace

DB

Job Submitter

Trace Compressor

Grid
5000

Meta-Broker

Emulated LRMS Real LRMSJob 
Trace 
Preparation

1

23

 

Figure 2: Meta-broker evaluation platform 

3.1 Emulated Local Resource Management  
As shown in Figure 2, the LRMS emulator component consists of 
three main parts: the Emulator Adaptor, the Emulator Scheduler, 
and the Emulated Resources. Note the equivalency of the 
functions in the emulated LRMS to those of the real LRMS (IBM 
LoadLeveler or any other generic LRMS). The emulation adaptor 
interacts externally with meta-brokering for job management 
(e.g., submission, termination, and query) and resource 
information exchange. For example, the resource information may 

include types and numbers of resources available in LRMS, and 
various utilization information (e.g. statistics on job queue lengths 
and system utilization).  
The second part of the emulated LRMS implements the behavior 
of a local scheduler (e.g., batch scheduler like Condor, PBS, SGE, 
or LoadLeveler) that performs assignments of jobs to resources 
managed by the LRMS. Our current implementation of the 
emulator scheduler is the first-in-first-fit algorithm. In this 
scheduling discipline the job queue is always sorted by arrival 
time. However, when the scheduler processes the queue, if there 
are insufficient resources for the first job to run, the next job is 
considered and will run if sufficient resources are available, and 
so on until a job can be run or the queue is exhausted. This 
scheduling policy keeps the resources utilized, but has the 
potential starvation of large jobs. More complex algorithms like 
backfill scheduling can mitigate the potential of resource 
starvation for jobs requiring large number of nodes. The 
experimental section 4.3 of the paper shows the occurrence of job 
starvation. 
The third part of the emulated LRMS provides virtual resources 
from a configuration file, as in Listing 1.   
It keeps the current state of each resource in terms of OS types, 
processor architecture, memory, and disk utilization. We assume 
that each job utilizes completely a processor, and that different 
jobs don't share the same set of processors. This may seem 
unrealistic in terms of emulating the performance of an 
application in a given machine (the impact of the instruction set, 
memory access speed, and I/O interrupts). However, the goal of 
the emulator is not to give an accurate representation of how fast 
an application runs on a given set of machines, but to understand 
the characteristics of resource utilization and job services.  
 

Listing 1: Emulated Resource File 

3.2 Workload Trace Reduction 
We have chosen to drive our experiments from real job traces 
representing two usage scenarios. One trace is selected from the 
Parallel Workloads Archive and contains 11 months of execution 
at the Cornell Theory Center (CTC) on a cluster of about 450 
single processor IBM SP2 nodes with similar CPU, memory and 

<EmulatedResources xmlns="http://cs.fiu.edu/emulator/resources"> 

  <Resource> 

    <Count>64</Count> 

    <Architecture>x86</Architecture> 

    <CPUCount>2</CPUCount> 

    <OS>LINUX</OS> 

    <PhysicalMemory>1024</PhysicalMemory> 

  </Resource> 

  <Resource> 

    <Count>32</Count> 

    <Architecture>powerpc</Architecture> 

    <CPUCount>4</CPUCount> 

    <OS>AIX</OS> 

    <PhysicalMemory>4096</PhysicalMemory> 

</Resource> 

</EmulatedReousces>

13



disk. The second trace is available at the Grid Workloads Archive 
and corresponds to the Grid5000 experiment, which comprises 9 
different locations and 15 computing clusters.  
Real-time execution is used to allow the emulated resources to 
interact with the physical system components. In order to conduct 
experiments based on long traces in reasonable time the traces 
need to be compressed in the time domain. A heuristic approach 
in reduction is taken and shown to retain several relevant 
properties of the original trace. Because the timescale of MB 
scheduling is long (many seconds) it is unnecessary to preserve 
the fine scale details of the original trace. The initial work 
reported here targets an execution time of a few hours and is 
derived from samples of about one week’s data from the original 
traces. The process has three stages: 

1. Select a sample interval from the original trace. The archive 
traces contain many months of data. So the first step is to select 
an interval representative of the entire trace. This interval is 
compressed in subsequent steps. For example, the CTC trace, 
which corresponds to a cluster of homogeneous computers, 
contains well defined and repetitive periods of submissions with 
duration of a week so selection is straightforward. The Grid5000 
trace contains more ‘batched’ submissions with periods of activity 
isolated by inactivity. Therefore we select a period of activity in 
which this behavior can be observed. We avoid using intervals 
that belong to the warm-up or wrap-up phases of the system. In 
this paper the sample interval from each trace is a week and is 
compressed by a factor of 60. 
2. Trace sampling.  After the trace interval is selected, a subset of 
jobs is chosen from this interval. This subset size is not fixed but 
depends on the sampling rate, which considers the target resource 
size appropriate in the emulated cluster experiments.  Because the 
CTC trace is from a cluster at Cornell of about 450 machines, we 
decided to use this same size of resources in our test environment. 
We further reduce the number of jobs such that the total execution 
time is a few hours by job sampling from the weekly trace, for 
example taking only 2 out 3 jobs. The requirements of each 
remaining job are preserved in this phase. In particular, the 
number of requested processors, the job submission time, and the 
job execution time are left unchanged.  
3. Time scaling. In this phase independent scaling factors are 
applied to the job inter-arrival and execution times. Although for 
the experiments reported here a common scale of 60 is applied to 
both.  
Finally, the properties of the traces prior and subsequent to 
reduction are compared. Figure 3 shows the cumulative 
distribution of processors, which indicates that the ratio of 
requested CPUs stays the same after modifying the trace. Then we 
perform a hierarchical clustering analysis with average linkage to 
find the submission trends of the trace by grouping jobs that were 
submitted in similar time periods. The distance between clusters is 
defined by using the difference between submission times. We 
heuristically determine k, the number of clusters, by plotting the 
total within-cluster sum of squares (WCSS) for different values of 
k and then finding the value for which the WCSS has a smaller 
increase, or an "elbow", in the graph. This and other methods are 
discussed in [20]. Figure 4 shows that clusters are closely 
correlated between the original and sampled traces: this indicates 
that sampling retains the arrival time distribution of the original 
workload. 

4. EXPERIMENTS AND RESULTS 
In this section we demonstrate how our experimental system helps 
us evaluate the performance of meta-broker job forwarding 
algorithms in a grid environment. We evaluate MB forwarding 
algorithms: round robin, queue length, and node utilization. We 
observe that anticipating which scheduling algorithm works best 
for job forwarding is difficult. This may result from the complex 
interaction between the workload, cluster size, and the algorithm.  
After a brief description of the experimental setup and our trace 
characterization, results are presented in Section 4.3. 

10

100

1000

10000

1 16 31 46 61 76 91 106 121 136 151 166 181 196
Job Requested # of CPUs 

C
um

ul
at

iv
e 

nu
m

be
r o

f C
PU

s 
(O

rig
in

al
)

1

10

100

1000

10000

C
um

ul
at

iv
e 

nu
m

be
r o

f C
PU

s 
(S

am
pl

ed
)

Original
Sampled

 
Figure 3: CTC original and reduced traces 

 
Figure 4: Cluster analysis of original and reduced traces 

4.1 Experimental Configuration 
The basic setup is shown in Figure 2. The implementation 
consists of one instance of the job submission component, and 
one or two instances of TDWB meta-brokers (TDWB-MB). Each 
MB has a single emulated LRMS. Jobs are submitted to one MB 
and may be forwarded to another MB.  
The detailed implementation of TDWB-MB is described in [21]. 
The TDWB-MBs establish connections with each other and 
exchange resource information and forward job requests as 
dictated by the scheduling policies. The scheduling policies used 
in our experiments are based on job queue length and system 
utilization. The scheduling function of MB is invoked once every 
5 seconds to assign jobs waiting on the MB input queue to its 
local LRMS or forward them to a remote MB. 
The emulated resources managed by each LRMS are in a 
configuration file. The LRMS sends resource information, 
performance metrics (e.g. queue length, utilization), and job state 

14



(e.g. submitted, executing, complete) updates to the MBs. The 
utilization statistics include the instant, 30-second average, and 
300-second average of both job queue length and node utilization.  
Utilization statistics are exchanged among MBs every 15 seconds. 
The scheduling algorithm emulated by the LRMS is first-in-first-
fit as described in Section 3.1. The LRMS job scheduling interval 
is 5 milliseconds which is essentially instantaneous. 

4.2 Trace Characterization 
The properties of the reduced traces from CTC and Grid5000 are 
summarized in Figure 5,   Figure 6,  
Table 1, and Table 2. For each job, the figures show the execution 
time, number of nodes required, and the submission time. Both 
traces are primarily scientific workload. As shown in the tables, 
the Grid5000 workload has more variable execution time as well 
as parallelism than that of CTC. The execution time in the 
Grid5000 figure is in log-scale to highlight the wide range of 
execution time of the different jobs. 

 

Figure 5: CTC job profile 

  Figure 6: Grid5000 job profile 

 
Table 1: Job execution characteristics 

Execution 
Time 

Max Mean Standard 
Deviation 

Coefficient 
of Variation 

CTC 1081 223.9 332.7 1.486 

Grid5000 10000 476.8 1190.3 2.496 

Table 2: Processor demand characteristics 

Num of 
Processor 

Max Mean Standard 
Deviation 

Coefficient of 
Variation 

CTC 162 14.0 29.4 2.095 

Grid5000 204 18.7 39.4 2.106 

 
Additional insight into the traces is provided by computing the 
resource ‘demand’. A simple analytic evaluation is performed on 
each trace to compute the number of concurrent jobs and 
occupied processor nodes in the system as a function of time on 
the assumption of an environment with unlimited resources.   In 
other words, each job is scheduled immediately as it is submitted, 
so there is no overhead and no contention waiting for free nodes. 
The results are shown in Figure 7 and Figure 8. For the CTC 
trace, there is a peak requirement of about 1400 processors at 
around 9000 seconds. Besides the peak, 400 processors can 
satisfy most requirements without resource competition. For the 
Grid5000 trace, the peak requirement is around 700, which is 
smaller than that of the CTC. However, Grid5000 has a much 
heavier workload than CTC because it has more concurrent jobs 
and they have consistently higher demand for the processors. This 
gives us hints on how to size our experimental environments. 

 

Figure 7: CTC execution under no contention 

 
Figure 8: Grid5000 execution under no contention 

15



4.3 Results 
In this section, we present results of three sets of experiments: 
comparison of single grid and multiple grids, evaluation of job 
routing policies between MBs. 
Since jobs were submitted to a single MB, we keep the record of 
the jobs’ arrival_time and jobs’ finish_time reported by LRMS in 
this particular MB. The job delay time is computed as:  
Delay time = finish_time - arrival_time - job’s execution time.   
This delay time accounts for all the overhead caused by the 
system: the communication time between MB-to-MB, MB-to-
LRMS, the scheduling algorithm execution time, and the waiting 
time on the job queues during the scheduling intervals of MB and 
LRMS and/or waiting for available resources in the LRMS. 
We mainly demonstrate the delay in our results. We also calculate 
expansion ratio and show the results too. 

4.3.1 Comparison of single cluster and multiple grid 
clusters 
The first set of experiments provides baseline results of using one 
MB site under the load of the traces. We begin with CTC trace. 
We choose the number of machines (nodes), each of which has 
one processor, to be 450 for one MB site scenario. This number is 
close to the original environment, which has 451 processors, 
where the CTC traces were collected. Then, we halve the resource 
number to 225 for the MB site.  We show the delay time of each 
job in Figure 9 indexed by its submission time. 
With 450 machines, we have more machines than requested 
processors most of the time. When there is no resource 
competition, the delay time is around 2.5 seconds, which is half 
the scheduling interval of our MB. We have a peak of delay time 
after 9000 seconds on the x-axis that corresponds to a demand 
peak. It is caused by 9 jobs each of which requires 129 processors 
that arrive sequentially. 
Then, we halve the number of machines to 225.  Not surprisingly, 
we can see that the average delay time has increased by more than 
a factor of three as shown in Table 3.  

 

Figure 9: CTC execution under 450 and 225 resources 

 

Figure 10: Grid5000 execution under 450 and 225 resources 

To exercise two MBs and their functions, we inter-connect two 
MB sites each with 225 machines. We use Round-Robin 
algorithm to assign the jobs between the two sites.  The result is 
shown in Figure 9. The delay time is larger than that of the 450-
machine case. The delay time when there is no resource 
competition is increased to around 5 seconds. This is because now 
the job goes through two MBs before it is dispatched to a resource 
to execute.  
Our second trace is from Grid5000. We also set the resource size 
to be 450 machines, which will satisfy the resource requirement 
most of time except for several of demand peaks. In Figure 10, the 
peaks of delay time match fairly well with the demand peak. We 
also collect results of one site of 225 machines and two sites of 
each with 225 machines using Round-Robin algorithm. Note that 
in the Grid5000 experiments, the delay time is calculated in 
seconds instead of milliseconds because of the long delay time 
such that we do not have delay time less than one second.  As 
shown in Table 3 and 4, halving the resource size has dramatic 
impact on Grid5000. 

Table 3: CTC/Grid5000: execution delay time 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

CTC 450 628.6 7.09 58.6 8.27 

CTC 225 1168.3  24.06 129.4 5.38 

Grid 450 905.0 8.16 53.1 6.51 

Grid 225 10362.0 420.21 1327.8 3.16 

 

Table 4: CTC/Grid5000: execution expansion 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

CTC 450 38.7  1.71 2.8 1.65 

CTC 225 101.1   2.25 6.6 2.95 

Grid 450 906.0 6.01 47.2 7.85 

Grid 225 10363.0 189.14 864.8 4.57 

16



4.3.2 Evaluation of job routing policies between 
meta-brokers 
When we have more than one cluster in the system, we may want 
to route some of the received jobs to other clusters. The simplest 
algorithm is Round-Robin algorithm. In this set of experiment, we 
compare the performance of a couple of other algorithms to 
Round-Robin. 
Our meta-brokers collect resource information from LRMSs and 
make scheduling decision based on the resource information. 
When LRMS can report more information, especially dynamic 
information, we may make better informed decisions. In our 
system, LRMS, which is implemented by the emulator, can report 
its queue length and the number of busy nodes to the meta-broker; 
meta-broker will exchange this information with each other. 
Then, the scheduling algorithm of MB can make scheduling 
decisions based on the data.  
We experiment on three straight-forward algorithms: queue-
length, free-node and utilization algorithms. MB will compare the 
queue length, the number of free nodes, or the utilization of 
different LRMSs and assign jobs to the one with the shortest 
queue length or the biggest number of free node or the smallest 
utilization. We use a 30-seconds-average queue-length number 
and instantaneous free node number for the results shown in the 
figure. The jobs assigned to remote LRMSs are routed to remote 
MB, which will then make its scheduling decision independently. 
We set up two clusters, each of which has a MB and 225 
machines. We show the results of CTC and Grid traces in Figure 
11 and 12. 

 

Figure 11: CTC execution with Queue Length & Utilization 

To further demonstrate the performance improvement, we also list 
the mean and variance of the delay time in Tables 5, 6, 7, and 8. 
Since most requirement peaks consist of homogenous jobs arrived 
in short period of time, Round-Robin gives us a pretty good 
performance. While free-node algorithm helps marginally, 
utilization algorithm degrades the performance because it tends to 
allocate more jobs to the smaller utilization cluster during peak 
times. 

 

 

Figure 12: Grid5000 execution with Queue Length & 
Utilization 

Table 5: CTC execution delay time for two sites 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

225/225/RR 633.3 12.64 65.9 5.21 

225/225/QL 633.0 11.37 65.0 5.71 

225/225/UT 660.2 26.63 109.0 4.09 

Table 6: CTC expansion ratio for two sites 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

225/225/RR 38.9   2.98 4.7 1.57 

225/225/QL 40.3   2.62 4.1 1.57 

225/225/UT 639.6   8.87 55.38 6.25 

 Table 7: Grid5000 execution delay for two sites 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

225/225/RR 1990 73.62 228.4 3.10 

225/225/QL 2679 58.74 197.3 3.36 

225/225/UT 1085 76.73 214.0 2.79 

 
Table 8: Grid5000 expansion ratio for  two sites 

# machines Max  Mean Standard 
deviation 

Coefficient 
of variation 

225/225/RR 1991.0   37.19 148.4 3.99 

225/225/QL 2680.0   34.07 147.9 4.34 

225/225/UT 660.0   42.56 142.9 3.36 

 

5. CONCLUSIONS AND FUTURE WORK 
 In this paper, we have introduced a new approach to evaluate the 
performance of meta-brokers in heterogeneous distributed grid 
computing environments. Our framework uses emulation to 
preserve the large scale structure of the grids with real 

17



deployments of meta-brokers, and uses reduced workload traces 
to speed-up the pace of the study. We have used the 
implementation of this framework to examine the impact of 
different job routing algorithms. 
Finally, we conclude by using the discussed methods to exercise 
different aspects of our evaluation platform. We have shown the 
impact of adding more peers to the system versus adding more 
resources to a site, and how additional information may affect 
scheduling decisions at a meta-broker. 
In the future, we plan to use our platform to investigate many 
different job routing algorithms between meta-brokers and with 
increase multiplicity of meta-brokers. We are also interested in 
measuring the network latency of job routing. 

6. ACKNOWLEDGMENTS 
This work was supported in part by IBM, and the National 
Science Foundation (grants OISE-0730065, OCI-0636031, and 
HRD-0833093) and in part by the Spanish Ministry of Science 
and Technology under contract TIN2007-60625. 

7. REFERENCES 
 

[1] LA Grid Initiative: http://latinamericangrid.org/ 
[2]  R. Badia, G. Dasgupta, et al  “Innovative Grid Technologies 

Applied to Bioinformatics and Hurricane Mitigation”.  High 
Performance Computing and Grids in Action, IOS Press - 
Amsterdam, Lucio Grandinetti, editor.  Dec., 2007. 

[3]  Ian Foster, Carl Kesselman, Steven Tuecke. The Anatomy of 
the Grid. Lecture Notes in Computer Science, 2001. 

[4] I. Rodero, F. Guim, et al.  "Looking for an Evolution of Grid 
Scheduling: Meta-brokering". CoreGrid Workshop in Grid 
Middleware'07, Dresden, Germany, June 2007. 

[5] A. Iosup, H. Li, M. Jan, et. al. “The Grid Workloads 
Archive”. Future Generation Computer Systems, Vol, 24, 
Issue 7, July 2008, pg 672-686. 

[6] N. Bobroff, L. Fong, et al.  “Enabling Interoperability among 
Meta-Schedulers”.  IEEE 8th International Symposium on 
Cluster Computing and the Grid (ccGrid), May 2008. 

[7]   IBM Tivoli Dynamci Workload Broker: User’s Guide; 
SG32-2281-01. 

[8]  GridWay: http://www.gridway.org/ 
[9]  A. Iosup, D. Epema, et. al. “Synthetic Grid Workloads with 

IBIS, KOALA, and GrenchMark”. In Proceedings of the 
CoreGRID Integrated Research in Grid Computing. 2005 

 
 
 
 
 
 
 
 
 

 

[10] D. B. Jackson, B. D. Haymore, et al.  “Improving Cluster 
Utilization through Set Based Allocation Policies”.  
Proceedings of International Conference on Parallel 
Processing Workshops. 2001. 

[11] A.  Iosup, T. Tannenbaum, et al.  Inter-operating grids 
through Delegated MatchMaking. Scientific Programming 
16(2-3): 233-253 (2008) 

[12] A. Takefusa, S. Matsuoka, et al., "Overview of a 
Performance Evaluation System for Global Computing 
Scheduling Algorithms," hpdc,pp.11, Eighth IEEE 
International Symposium on High Performance Distributed 
Computing (HPDC-8 '99), 1999 

[13]I. Rodero, F. Guim, et. al. "Evaluation of Broker Selection 
Strategies". Computer Architecture Department, Technical 
University of Catalonia, UPC-DAC-RR-CAP-2008-41, 2008. 

[14] http://www.cs.huji.ac.il/labs/parallel/workload/models.html 
[15] Feitelson, D.G., Tsafrir, D. “Workload sanitation for 

performance evaluation”. In IEEE International Symposium 
on Performance Analysis of Systems and Software, March 
2006 . 

[16] Virginia Lo. Jens Mache. Kurt Windisch. “A comparative 
study of real workload traces and synthetic workload models 
for parallel job scheduling”. In Job Scheduling Strategies for 
Parallel Processing, 1998 

[17] Iosup, A. and Epema, D. 2007. Build-and-Test Workloads 
for Grid Middleware: Problem, Analysis, and Applications. 
In Proceedings of the Seventh IEEE international 
Symposium on Cluster Computing and the Grid (May 14 - 
17, 2007). CCGRID.   

[18] L. Eeckhout, A. Georges, K. D. Bosschere.  “Selecting a 
Reduced but Representative Workload”. Middleware 
Benchmarking: Approaches, Results, Experiences.   
OOSPLA workshop, 2003.  

[19] IBM Tivoli Workload Scheduler LoadLeveler, http://www-
306.ibm.com/software/tivoli/products/scheduler-loadleveler/ 

[20] J. Hartigan. 1975. Clustering Algorithms, Wiley, New  York 
[21] N. Bobroff, G. Dasgupta, et al. “A Distributed Job 

Scheduling and Flow Management System”. ACM Operating 
Systems Review, Vol. 42, Issue 1, Jan. 2008. 

[22] H. J. Song, X. Liu, et al.  “The MicroGrid: a Scientific Tool 
for Modeling Computational Grids”. High Performance 
Networking and Computing Conference (SC), Dec. 2000. 

 
 
 

18


