

An Incremental Approach to Porting Complex Scientific

Applications to GPU/CUDA

Javier Delgado
2
, João Gazolla

1
, Esteban Clua

1
, S. Masoud Sadjadi

2

1
Instituto de Computação – Universidade Federal Fluminense, Niterói , RJ , Brazil

2
College of Engineering and Computing – Florida International Univ. Miami, U.S.A.

{gazolla,esteban}@ic.uff.br, {jdelga06,sadjadi}@fiu.edu

Abstract. This paper proposes and describes a developed methodology to port

complex scientific applications originally written in FORTRAN to the nVidia

CUDA. The process was developed and validated by porting an existing

FORTRAN weather and forecasting algorithm to a GPU parallel paradigm.

We believe that the proposed porting methodology described can be

successfully utilized in several other existing scientific applications.

1. Introduction

Recent work has shown that it is no longer necessary to rely solely on the CPU of a

computer to perform all of a program’s computations. Graphics Processing Units

(GPUs), with their large number of processors, provide a cost-effective solution for

high-performance computing (HPC). As an added benefit, modern programming

frameworks, such as nVidia's Compute Unified Device Architecture (CUDA) have

made programming on the GPU more straightforward and friendly for programmers of

high-level languages with basic parallel programming knowledge. However, exploiting

the benefits of the GPU architecture complicates programming. Due to the different

programming paradigm of GPUs, it is not trivial for many scientific applications to be

ported to CUDA. Since current solutions provide limitations in terms of programming

languages, large codebases need to be entirely rewritten in many cases.

 In this work, we describe a methodology for easing the process of porting

software with a large amount of code to CUDA. The software that we used for our case

study is Weather Research and Forecasting (WRF), version 3.0. WRF requires a large

amount of computational resources in order to generate useful simulations. Aside from

that, in [Michalakes and Vachharajani 2008] the authors describe the need for the fine-

grained parallelism, which GPUs can provide, for numerical weather modeling. The

module we port as a proof-of-concept of our paradigm is a continuation of the work

described in [Michalakes and Vachharajani 2008].

We organize the rest of this paper as follows: In Section II, we provide a

summary of the status of GPU-enabling WRF, in Section III, we describe our proposed

porting methodology, applied to the WRF problem. In Section IV, we provide results

using the GPU-enabled WRF and in Section V, we conclude this paper.

2. Background and Domain Description

2.1. GPUs and CUDA

CUDA is a parallel computing architecture developed by nVidia corporation. CUDA is

the computing engine in nVidia graphics processing units (GPUs) that is accessible to

software developers through widely used programming languages. Currently,

programming in CUDA is possible using an extension of the C programming language.

2.1. Domain Description

Many approaches have been investigated in order to parallelize scientific problems

written in FORTRAN or C to utilize compute clusters and/or grids. FORTRAN is often

preferred for highly mathematical code. Many computationally intensive applications

are written at least partially in FORTRAN, e.g. Quantum Espresso, WRF [Michalakes

and Dudhia 2004], MM5 [Grell and Dudhia 1994], and Elmer. Most approaches are

specific to the target application, yet many applications share certain characteristics. For

example, their inputs and outputs usually consist of multi-dimensional arrays consisting

of floating point values. By observing these characteristics, and noting the popularity of

FORTRAN, a generally-applicable paradigm can be devised in order to save software

engineering effort in future works.

WRF consists of nearly 200,000 lines of code, of which approximately 20% is

generated automatically using a Registry, which is based on a computer aided software

engineering (CASE) mechanism [Skamarock 2005]. Like most high-performance

scientific applications, WRF is flexible in terms of parallelism. It supports MPI and

OpenMP in order to allow coarse and fine grain parallelism, respectively. WRF uses a

separate, high-level parallelism library called Comm-API [Iacono 2000], which

supports different parallel communication APIs. CUDA enhances WRF’s for WRF

parallel programming support and performance for significantly faster execution on

commodity hardware.

Quantum Espresso is another scientific application with its most computationally

demanding parts written in FORTRAN. After profiling an example, we noted that the

function that consumed the most execution time, consisted of 4 input variables and 7

output variables, mostly 2-dimensional arrays of floating point values. This

characteristic is shared by most modules of WRF.

The swrad module of WRF, which is what we ultimately decided to port,

consists of two loops around the Cartesian plane. The calculations inside these loops

consist of several short loops through one of the dimensions. Inside the short loops are

several arithmetic calculations and conditional statements. Most of the processing is

done on multi-dimensional arrays of floating point values. Without a not domain

expert’s assistance, understanding the code is challenging. However, porting the

calculations and conditional statements is trivial. A porting approach must take this into

account.

Porting WRF to CUDA is time consuming since the only language supported by

CUDA is C. The fact that there exist many applications like WRF has motivated the

development of the proposed methodology introduced in the next section. In addition,

the fact that CUDA allows incremental porting of an application from CPU to GPU

(i.e., it is not necessary to port the entire application to execute exclusively on the GPU)

has reinforced our methodology. The WRF codebase is large but modular, which allows

the incremental porting model allowed by CUDA to be utilized for piece-wise porting.

3. Proposed Methodology

Our proposed approach involves incrementally porting parts of the code and testing by

generating output files containing the values of the variables being modified. Basically,

our methodology divides the process of porting into 4 different stages: profiling,

development, testing, and optimization. Since porting is performed on a per

basis, this approach follows an incremental software engineering process.

The overall procedure is depicted in Fig. 1. The two versions of the code are

separately executed. The ou

may be in a raw/binary format. In the case of WRF, their values are a binary dump of

the FORTRAN variables. These files are passed into a generator that creates text

output in a uniform format.

3.1. Profiling

Several instrumented executions of WRF were run to determine what module to

port/optimize. Table 1 shows the computing systems that were utilized for the profiled

executions. Table 2 describes temporal and geographical properties of the WRF input

domains used, and Fig. 2 shows the percentage of execution time used by the most time

consuming functions, the one presumably benefit most from the added power of GPUs

are the cloud microphysics (

of the total execution time.

Fig. 2. Breakdown of execution
different systems.

(a)

Fig. 1. Overview of the porting methodology used. (a) shows the overall
methodology. (b) shows the

3. Proposed Methodology

sed approach involves incrementally porting parts of the code and testing by

generating output files containing the values of the variables being modified. Basically,

our methodology divides the process of porting into 4 different stages: profiling,

pment, testing, and optimization. Since porting is performed on a per

basis, this approach follows an incremental software engineering process.

The overall procedure is depicted in Fig. 1. The two versions of the code are

separately executed. The output and/or state variables’ data is written to a file. This data

may be in a raw/binary format. In the case of WRF, their values are a binary dump of

the FORTRAN variables. These files are passed into a generator that creates text

m format.

Several instrumented executions of WRF were run to determine what module to

shows the computing systems that were utilized for the profiled

describes temporal and geographical properties of the WRF input

domains used, and Fig. 2 shows the percentage of execution time used by the most time

, the one presumably benefit most from the added power of GPUs

ics (wsm52d) and scalar advections, corresponding to over 25%

. Breakdown of execution per function in a WRF simulation, using

 (b)

Overview of the porting methodology used. (a) shows the overall
methodology. (b) shows the “Evaluate the Ported Module” procedure

sed approach involves incrementally porting parts of the code and testing by

generating output files containing the values of the variables being modified. Basically,

our methodology divides the process of porting into 4 different stages: profiling,

pment, testing, and optimization. Since porting is performed on a per-module

basis, this approach follows an incremental software engineering process.

The overall procedure is depicted in Fig. 1. The two versions of the code are

tput and/or state variables’ data is written to a file. This data

may be in a raw/binary format. In the case of WRF, their values are a binary dump of

the FORTRAN variables. These files are passed into a generator that creates text-based

Several instrumented executions of WRF were run to determine what module to

shows the computing systems that were utilized for the profiled

describes temporal and geographical properties of the WRF input

domains used, and Fig. 2 shows the percentage of execution time used by the most time-

, the one presumably benefit most from the added power of GPUs

) and scalar advections, corresponding to over 25%

WRF simulation, using

Overview of the porting methodology used. (a) shows the overall
“Evaluate the Ported Module” procedure.

Generally, porting the module that takes the most time results in the most

speedup. However, this is not always the case. For example, in [Michalakes and

Vachharajani 2008] the authors found that the overall speedup after porting the WSM5

module of WRF was larger than the individual speedup of the isolated module. Their

assessment as to why this happened is because it was the most load-imbalanced module

of the application. When executing with 16 nodes of the NCSA Abe cluster, we

observed that the percentage of time for the WSM5 module varied between 7.9% and

16.2%. This was considerably more than the next highest varying function, which had a

range of 6.5% – 11.3%. Note that these values were obtained using the jan00 domain.

Table 1. Description of Systems Used

Name CPU RAM GPU #cores Clock

Vaia C2D 2.26 GHz 2 GB 9300M 16 1.1 GHz

Minerva C2D 2.26 GHz 2 GB 9400M 16 1.1 GHz

Lincoln Xeon 2.33 GHz 16 GB Tesla S1070 240 1.5 GHz

Table 2. Description of WRF Domains

Domain Name Length (km) Width (km) Resolution (km) Simulation Time (h)

Jan00 1830 2220 30 12

1500x15 1500 1500 15 24

2000x15 2000 2000 15 24

The results shown in Tables 1 and 2 and in Fig. 2 assume all other WRF input

parameters are constant. WRF allows for a large number of runtime configuration

differences corresponding to different meteorological theories. The application profile

information in Fig. 2 corresponds to executions with the most basic form of short-wave

radiation physics and a radiation time step of 30 seconds (which is the recommended

value for the input domain used). Since short-wave radiation is listed as one of the

modules to port, we did further profiling with different short-wave radiation schemes as

well as different radiation periods. We found that this had a significant effect on the

execution time. As a result, in the future it would be beneficial to port the more

computationally-intensive radiation schemes.

3.2. Development Approach

Our methodology focuses on porting code that presumably has been tested and is

production-ready. Such is the case for the WRF modules we analyzed: since many of

these applications have been developed for a long time, the code is presumably robust.

As a result, our model needs to effectively test the output of the ported code.

However, the limited I/O operations supported by CUDA complicate this process. A

partial workaround for this is to first port the code to (CPU-only) ANSI C, test it, and

then port to CUDA. This way, much of the testing could be done in the middle stage of

the implementation (in which all the code is in C). However, the process of porting the

code to CUDA requires significant effort and is prone to error, so additional testing is

still required after porting to CUDA from ANSI C.

Even porting existing C code to CUDA is difficult. One of the difficulties faced

is the fact that the programmer is not able to access the GPU memory directly; the data

must be copied to a temporary variable on the host (i.e. main memory) before their

value is read and/or modified. Another problem is that there is no dynamic allocation of

memory in GPUs – the programmer must know the amount of data needed for each

variable and pre-allocate it at the GPU. Another factor to consider is the highly-parallel

execution model, where there is no guarantee about the order of thread execution.

If porting from FORTRAN to CUDA, the added burden of allocating memory,

copying data, updating memory, and retrieving data makes the likelihood of introducing

bugs greater. CUDA provides an emulation mode, which causes threads to be serialized.

However, the emulation mode will not reveal all bugs, since kernel calls are

asynchronous when executed on the GPU. Since there is no support for dynamic

memory allocation, the programmer has to focus on porting and memory management

simultaneously. If the program being ported is written in serial, the parallelization

complexity compounds the porting. In the specific case of porting from FORTRAN to

C, there are general complexities to be addressed. For example, array indexing is

different.

Taking the above factors into account, it seems that porting large sets of code

directly to CUDA will result in more problems and thus a longer development time than

porting the code in two steps. However, many of these problems are faced when porting

to CUDA from C as well. Memory allocation, for one, is equally difficult. Also, the

difference in array indexing is still a problem and actually the indexing doing in C is not

used in CUDA; this can result in a lot of wasted effort.

Our assumption is that development time is reduced if the porting is done

directly to CUDA, while mitigating some of the general porting related issues. The

authors of [Michalakes and Vachharajani 2008] addressed some of the problems by

using a framework called “spt” consisting of a preprocessor that processes certain

macros in the (ported) code that abstract some of the porting effort. The macros

encapsulate the overhead of memory allocation and transfer to and from the GPU. They

also encapsulate the array index addressing issue of the CUDA model. The macros and

preprocessor are described in more detail in [Michalakes and Vachharajani 2008].

Among other things, the preprocessor automates the addressing of array indices (of two

and three dimensional arrays) at the GPU for variables with a specified compiler

directive specified in their declaration. The programmer only needs to use basic array

indexing as if a loop existed. This framework eases the porting process, applying it in

general to other applications should be feasible.

3.3. Testing the Ported Code

To port individual modules that are normally not standalone applications, it is best to

implement a standalone version of the module rather than performing an entire

simulation to test the single module. To obtain input data for testing, the module can be

modified to print the values of its input variables while performing a full simulation.

This output can be directed to a file that can later be used as input data. A test driver

may then be developed that executes both versions of the code, with the same input, and

compares their output.

The applications we target with this approach typically have large output data

sets. Round-off error usually occurs when working with floating point numbers due to

the different orders of operations on highly-parallel systems as well as non-standardized

floating point rounding specifications. This issue has been particularly common in

GPU programming, since GPUs have the added problem of not supporting the IEEE

Floating point standard [Hillesland 2004]. Therefore, a mechanism for testing the output

of the CPU and GPU versions of the code needs to be developed, and simple (bit-wise)

comparisons will not work due to round-off error.

To measure the similarity between the CPU and GPU outputs, text-based and

graphical tools can be used. The text-based tools provide a quick quantitative similarity

score. However, with large arrays, the statistics calculated and displayed by a text-based

tool may be inadequate. In these cases, graphical output is the most revealing. We have

found difference plots to be well suited for this. Difference plots show the relation

between the difference of values and their means. This is ideal for our application since

many parameters, with a wide range of values, need to be plotted.

3.4. Optimization

After ensuring correctness of the code, it is necessary to optimize it. Two underlying

issues need to be addressed. The first is that the algorithm is efficient. The other is that

the runtime configuration (e.g. number of blocks and threads per block) is efficient and

matches the target hardware. CUDA has eased the burden by providing profiling tools

with their toolkit. Some general optimization schemes have been described in the

literature [Ryoo 2008].

While every application requires specific tweaks to achieve optimal

performance, a general first set of steps can be taken to start the optimization process.

We devised a set of code design guidelines and ensured they were met. The approach in

[Ryoo 2008] provides a general methodology of minimizing the optimization space for

CUDA programs, which saves optimization time.

Profiling and Other Computer-assisted Analysis

Profiling at the kernel level provides valuable feedback about the resource utilization of

the kernel. It is essential for determining bottlenecks and inefficiencies. With multiple-

function kernels, profiling quickly reveals the greatest resource consumers. CUDA

provides a profiler for recording global and local memory usage, number of instructions,

number of branches, thread information, and the ratio of CPU-time to GPU-time.

Manual analysis with the CUDA debugger can reveal more in-depth information.

Manual Analysis

In order to determine the optimal number of multiprocessors and blocks per thread, an

exhaustive test with multiple configurations was performed. This was possible since the

kernel executes quickly (less than 30 minutes were required for the search). Once the

optional runtime configuration was determined, a “checklist” of optimizations that can

be carried out by inspecting source code and analyzing execution time with different

inputs was devised and applied to WSM-5, as follows.

• Take advantage of the Shared Memory. The CUDA architecture has different kind

of memories, including global and shared memory. Access to shared memory is many

times faster than global memory. For certain kinds of access it is similar in

performance to registers. Due to its relatively small size (e.g. 16 kB per multiprocessor

in the GT200 architecture), it must be utilized carefully. Threads on the same

multiprocessor (block) can cooperate and access this memory, which allows inter-

thread data reuse. In the case of WSM-5, the large amount of input data limits the

amount of memory that can be put into shared memory. The SPT preprocessor

described in Section 3B allows developers to easily decide which variables should go

in the registers and does this.

• Optimize global memory access. Programmers can minimize the performance impact

of using slower memories. The main technique is to ensure that memory is accessed in

a coherent/coalesced manner. When this is done, contiguous memory can be

transferred in parallel by different threads. This saves several compute cycles,

depending on the type of variable(s). To ensure coalesced access, local memory can be

used, which is coalesced by default. All constant-sized arrays are stored in local

memory. Array indices in WSM-5 are sized based on the size of the physical domain

being modeled, which is determined at run time. The workaround to this is to ensure

that access to the global variables is coalesced. Output from the CUDA profiler

revealed that all global memory was being loaded and stored in a coalesced manner.

• Minimize Transfers – Communication between the system memory and the PCI

Express slot can easily become a bottleneck. A PCI Express Bus has a speed of 8 GB/s

(i.e. it can allocate 2 Giga-words of 4 bytes per second). During one operation, data

must be sent from the CPU to the GPU, one operation performed and data must be

copied back from the GPU to the CPU. So the 2 Giga-words limit drops to 1 Giga-

word. Because thousands of threads may be running, bandwidth is further limited.

Basically, it is necessary to ensure as high a ratio as possible of arithmetic operations

to memory operations. In WSM-5, this ratio is approximately 1:350, which is very

bad. This is caused by the large amount of input data.

• Maximize Occupancy for bandwidth-limited codes. The CUDA profiler revealed

that the occupancy was only 0.25. Again, the fact that the amount of data that needs to

be transferred is so large seems to be a culprit here. There are two possible solutions to

this. One is to delay the transfer of parts of the variables in the kernel, if possible. The

other, with large codes like WRF, is to perform the transfer while other modules are

executing and/or blocking. Both techniques add complexity to the algorithm of the

code.

• Mask latency. Latency is masked by ensuring multiple threads are available to

compute while others are performing I/O.

4. Results and Discussion

The fastest overall execution time of the ported SWRAD module on Minerva was

9.6ms, compared to 20ms for the CPU version. The performance improvement is good,

considering the coding effort put in. However, there is still a large room for

improvement. As with the WSM-5 module, the vast majority of the execution time is

spent on data transfer - only 0.069ms are spent in the actual kernel computation in the

optimal case. Since the variables used for WSM-5 and SWRAD are not the same, the

decrease in overall execution time for an entire simulation is just the sum of the time

saved from each module. The fact that the performance on the commodity 9400m GPU

achieved faster times than the Tesla node proves that there is room for improvement.

5. Conclusion

We have described an approach to porting complex scientific applications to CUDA.

The methodology we propose attempts to save development effort by specifying a

simple iterative approach to porting that does not require intimate knowledge of the

application being ported. By employing it on a module of a well-known weather

forecasting application, we were able to speed up the module by more than a factor of

two, without having to invest an unreasonable amount of time to do so. The

performance improvement was experienced by virtue of the GPUs relatively large

computing power, but there still exists a large amount of potential that is not being

exploited due to the chosen application’s particular problem of having a large data size

to computation ratio. Future work will emphasize improving performance.

8. Acknowledgment

This work was supported in part by the NSF for the support on the PIRE, GCB, and

CREST projects (NSF grants OISE-0730065, OCI-0636031, and HRD-0833093), and

in part by IBM and TeraGrid. Also, the Brazilian authors would like to thank for the

support of CAPES, CNPq and FAPERJ, from Brazil.

7. References

Michalakes, J. and Vachharajani, M. (2008) “GPU Acceleration of Numerical Weather

Prediction”, Parallel Processing Letters. Vol. 18 No. 4. World Scientific. pp. 531-

548.

Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W. and

Wang, W. (2004) "The Weather Reseach and Forecast Model: Software Architecture

and Performance" In Proc. 11th ECMWF Workshop on the Use of High Performance

Computing In Meteorology, p. 25-29, Reading U.K.

Grell, G.A., Dudhia, J. and Sauffer, D. R. (1994) “Description of the fifth generation

Penn State/NCAR Mesoscale Model (MM5)”, NCAR Tech. Rep., TN-3981STR, pp.

121, Natl. Cent. for Atmos. Res., Boulder, Colo.

Skamarock, W.C., Klemp , J. B., Dudhia , J., Gill , D. O., Barker , D. M., Wang ,W. and

Powers , J. G. (2005) “A Description of the Advanced Research WRF Version 2”

NCAR/TN- 468+STR.

Iacono, M.J., Mlawer, E. J., Clough, S. A. and Morcrette, J. J. (2000) “Impact of an

improved longwave radiation model, RRTM, on the energy budget and

thermodynamic properties of the NCAR Community Climate Model” CCM3, J.

Geophys. Res., 105, 14,873–14,890.

Hillesland, K. E. and Lastra, A. (2004) “GPU floating-point paranoia” In GP2 ACM

Workshop on General Purpose Computing on Graphics Processors, p.8.

Ryoo, S., Rodrigues, C., Stone, S., Baghsorkhi, S., Ueng, S., Stratton, J., Hwu, W.

(2008) “Optimization space pruning for a multithreaded GPU”, in: International

Symposium on Code Generation and Optimization, CGO.

