
UDR: UDT Enabled Rsync for Large Data Transfers

Allison Heath, Robert Grossman

Problem Overview

UDT is a proven technology for transporting large datasets 
over high performance networks and has powered
applications that have won the Supercomputing Bandwidth 
Challenge in 2006, 2008 and 2009. However, the scientific 
community has been slow to adopt UDT, likely because of a 
lack of easy to use tools. The goal of this project is to enable 
familiar tools with UDT. As a first step towards this goal we 
have created UDR, a lightweight wrapper that enables rsync
to use UDT for data transfers.

UDT

UDT is a UDP-based, application level protocol. It is 
designed to support transferring large datasets over high 
speed wide area networks, where TCP has been known to be 
extremely ineffective. 

UDT’s features include:
• UDP-based, application level protocol
• Protocol design to support efficient packet processing
• Configurable congestion control
• Efficient native congestion control algorithm
• Optimized implementation as a user level C++ library
• Supports Linux, BSD, UNIX, and Windows
• API very similar to BSD Socket
• Open source BSD license
• Available at udt.sourceforge.net

UDT’s results include:
• Send data from disk-to-disk at greater than 9Gb/s over a 

10Gb/s wide area
• Powered Sector to enable over 100Gb/s data exchange 

among 4 data centers across the US
• Forms the underlying technology for products from 8 

different companies. 
• Used to move files by thousands of users each day who 

subscribe to the Hi Messenger service offered by Baidu

UDR Design and Implementation

UDR design goals:
• As similar to use as possible to rsync
• Minimize dependencies
• Simple installation
• Security support

Current UDR installation and usage:
• Download from GitHub (github.com/LabAdvComp/UDR)
• Requires one dependency: OpenSSL
• Compile with make, specifying OS and architecture
• Creates a single binary ‘udr’
• Prefix the current rsync command used to transfer data 

with ‘udr’, e.g.:
udr rsync -avz /home/user/tmp/ hostname.com:/home/user/tmp

• Any rsync options can be used

UDR does not change rsync, it works by creating a UDT 
connection and then places the connection between the 
rsync client and server. Below is a high level diagram of 
how UDR functions:

Results

We monitored transfer speeds of a 108 GB and a 1.1 TB 
dataset, between OSDC nodes located in Chicago and LVOC 
with a round trip time of 104ms. The table below contains the 
results of these transfers:

• The current implementation of UDR only uses the blowfish cipher for encryption so rsync
using blowfish as well as the default 3des encryption are included for comparison.

• LLR is defined as the ratio between the transfer speed and the minimum of the source 
disk read speed and the target disk write speed. In our experiments the local source disk 
read speed was 3072 mbit/s and local target disk write speed was 1136 mbit/s, so the 
denominator for the LLR is 1136 mbit/s. 

1.1 TB transfer speed over time:

108 GB Dataset 1.1 TB Dataset

mbit/s LLR mbit/s LLR

UDR (no encryption) 752 0.66 738 0.64

rsync (no encryption) 401 0.35 405 0.36

UDR (blowfish) 394 0.35 396 0.35

rsync (blowfish) 280 0.25 281 0.25

rsync (3des) 284 0.25 285 0.25

Future Work

Questions or Comments: Allison Heath (aheath@uchicago.edu)

• More complete security, investigating DTLS 
• Rsync server capabilities (right now there is a development 

branch on GitHub)
• Enabling other transfer tools in a similar manner
• Integration into other OSDC capabilities
• Always open to feedback and suggestions


