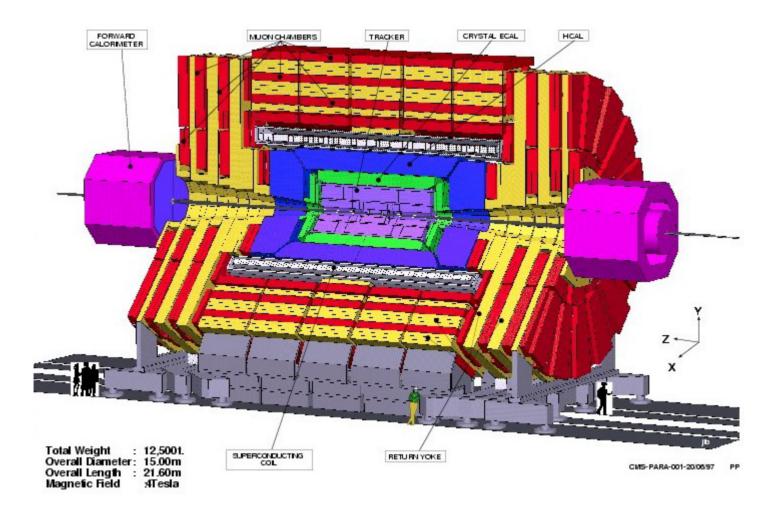


CHEPREO PHYSICS RESEARCH


Vasken HagopianStephan L. LinnFlorida State UniversityFlorida International University

23 July 2004

CMS HCAL

Current Research Activities

- Host of Winter '04 HCAL meeting at FIU
- FSU/FIU Grid Monte Carlo, effort started
- HCAL test beam @ CERN, effort ongoing for FIU and FSU
- FSU/FIU laser calibration system, effort ongoing
- HCAL Detector Control Systems coordination (L3 CMS Management, Steve Linn of FIU)

Grid Monte Carlo

- People
 - H. Prosper (FSU faculty)
 - Y.Gershtein (new FSU faculty)
 - J. MacDonald (FSU physicist)
 - E. Rubio (FIU computer scientist)
- Status
 - RedHat, grid, Rocks, Open AFS, scram, CMS installed at FSU
 - RH, grid, Rocks installed at FIU
 - Limited testing at FSU
- Soon
 - System test on FSU PD cluster (60 nodes)
 - Then FIU/NAP cluster (~25 nodes)
 - Port CMS environment to FIU
 - Production as needed
 - Physics algorithm development

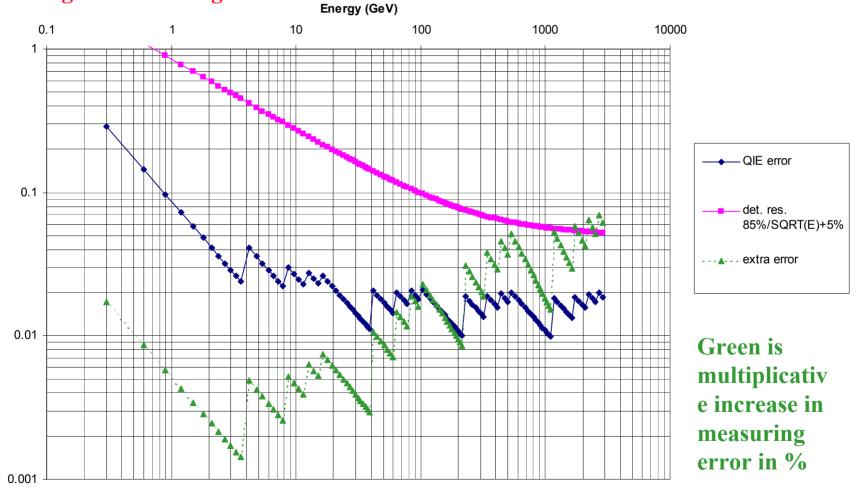
HCAL Testbeam

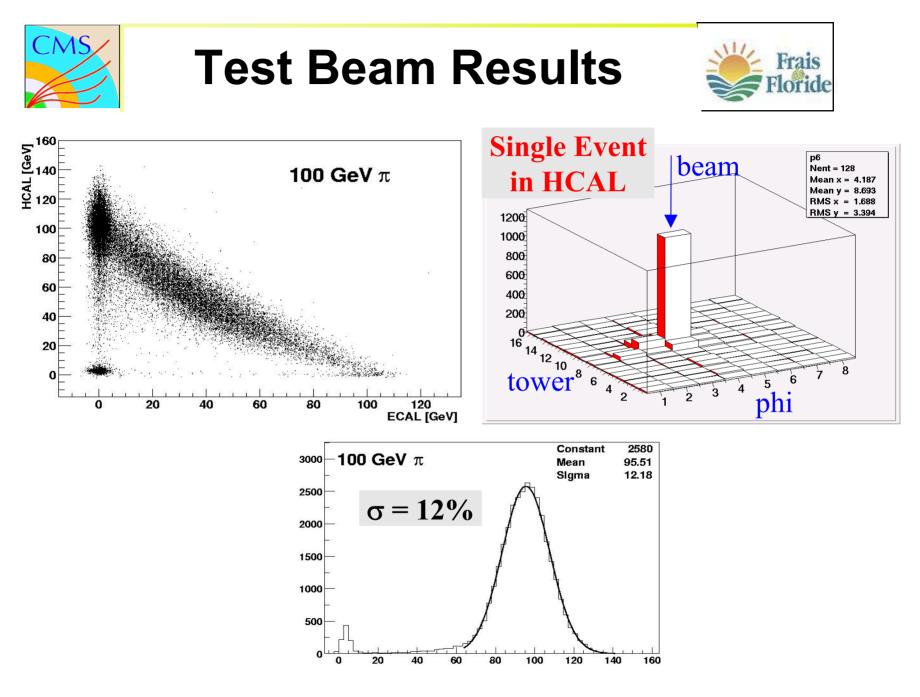
FIU/FSU participation:

- Hardware setup May '04
- Data collection @
 CERN Summer '04
 Data analysis @
 CERN + Fermilab

- CERN H2 test area
- 5-250 GeV beam
- e,π,μ unseparated
- Table rotates modules into $\phi \! \! \eta$ projections
- data logged and networked to FNAL for same-day analysis

beam




QIE Flash ADC

Implementation of a 4-range splitter and a 5 bit non-linear FADC allows to simplify

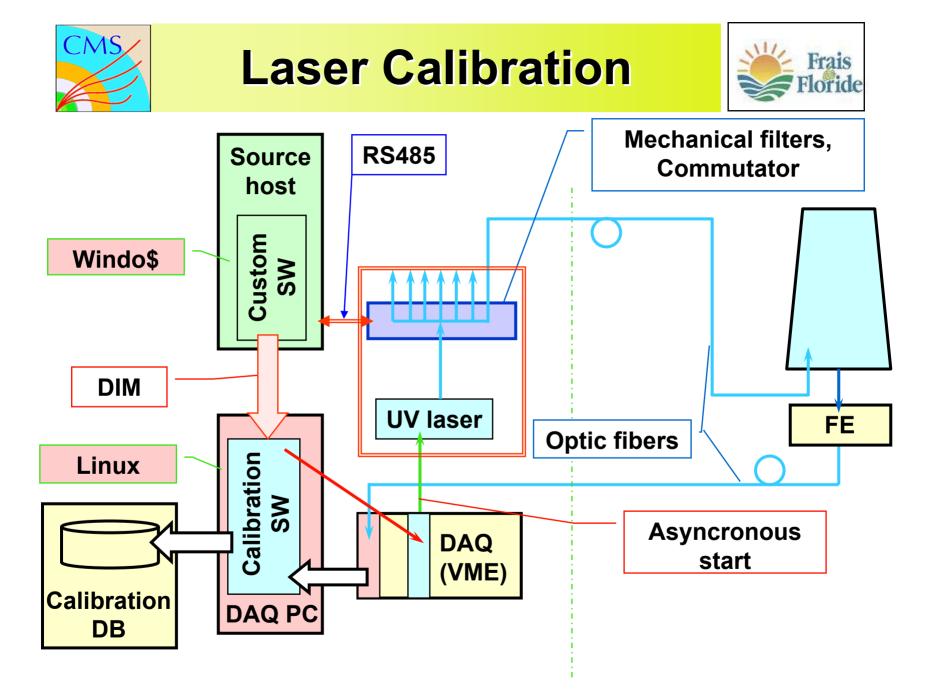
the design while having minimum effect on the detector resolution.

Trigger Tables

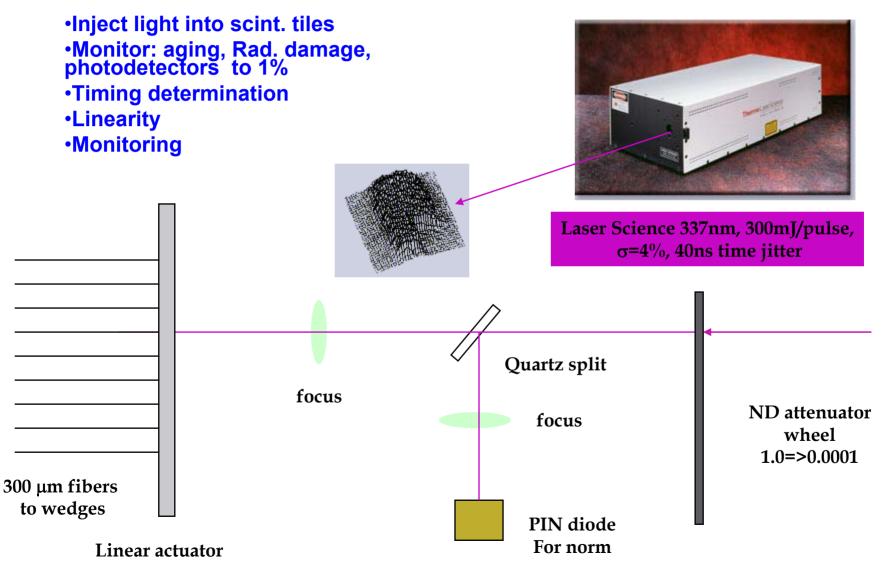
Level-1 Trigger at low luminosity (2×10³³cm⁻²s⁻¹)

• Total Rate: 50 kHz. Factor 3 safety, allocate 16kHz

Trigger	Threshold	Indiv.	Cumul rate
	(ε=90-95%) (GeV)	Rate (kHz)	(kHz)
1e/γ, 2e/γ	29, 17	4.3	4.3
1μ, 2μ	14, 3	3.6	7.9
1 τ, 2 τ	86, 59	3.2	10.9
1-jet	177	1.0	11.4
3-jets, 4-jets	86, 70	2.0	12.5
Jet * Miss-E _T	88 * 46	2.3	14.3
e * jet	21 * 45	0.8	15.1
Min-bias		0.9	16.0


Tables exist for 1/5 and design L. "Discovery" modes covered well. We think we know how to trigger CMS and acquire the Physics.

Laser System to Calibrate and Monitor

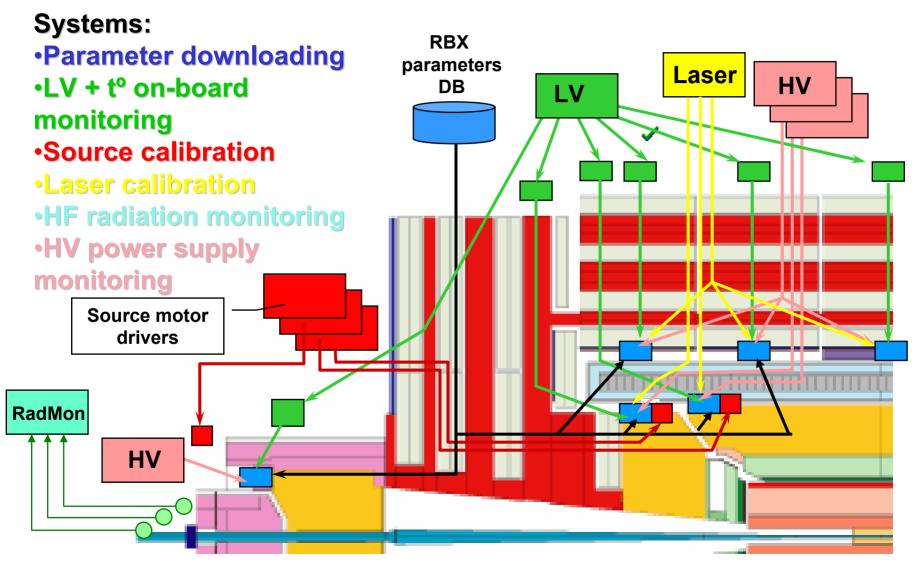

- 1. Each ADC (QIE) has 8 constants to be determined.
- 2. Test beam measure response to 250 GeV and laser will extrapolate to 3 TeV energy.
- 3. Monitor radiation damage to scintillators and photodetectors (HPD)
- 4. Monitor the Data acquisition chain

Laser Calibration

Laser Calibration

- New stand-alone system to replace existing prototype
- FSU design and construction (V.Hagopian and K. Johnson)
- FIU supplied components
 - Linear and rotary stages
 - •1µm precision
 - over torque protection
 - IR stops
 - controllers (MicroMini)
 - Interface RS 485 PC serial port
- FIU "driver" software (DIM interface)

CN



I	5							
My Computer		Sile Laser Control 2004			🗱 fVeryMain 🔳 🗖 🗙			
(1	Motor 1 -10000 Enter verbose Init: COM1 open success Init: Controller OFF 0x00000010			Open <u>Î</u> <u>C</u> lose			
My Network Places	Recycle Bin	Init Status Lose ERROR! motor disabled						
-22	Ø	MoveTo 2						
TurboTax Basic	Internet Explore	MoveRel -10000		輝 Laser Control 2004				
2003	9	Index -1		Motor 2 -10000 Enter MovTo: motor int DN motor in position				
Access IBM	SpywareBlaster	Position -1		Init Status Lose controller in velocity mode trajectory complete ERROR!				
		Status 0x00000110		MoveTo 2 device net mode off trajectory program limit range reached				
	3 .			MoveRel -10000 emergency stop external event 1 positive limit reached				
My Documents	C++Builder 6			Index .1 negative limit reached				
				Position -1				
Norton AntiVirus 2003	HoneyDo			Status 0x0BADBABE				
内)							
Acrobat Reader 5.0			DC	N/INT* 1.1 * . /1				
		• Prototyping:	Pfc.	. MI.N1SNK1N (J	t l U			
Active-HDL 6.2								
\mathbf{O}		student)						
Windows Media		. TT TO 1 1						
Player	• Uses Borland C++ for API tools							
Outlook Express								
	•Self correcting/calibrating							
linn	• Must be "idiot" proof							
C.\								
DO\$								
tu start	Lasercontrol2004				100% P-CE & CE La DE 3:40 PM			

DCS Coordination

Challenges:

- Must be extremely reliable because some components are buried.
- Must operate in a 4 Tesla field.
- Must operate in a high radiation environment for > 10 years
- Coordination of 6 systems:
 - 1/3 hardware
 - 1/3 software
 - 1/3 interfacing (human aspects)

Future Activities

- Monte Carlo production via grid
- Sector test starting Oct '04
- Torture testing of existing hardware/software (student opportunity)
- DCS final architecture and DAQ interface
- Start development of PVSS layer with laser control as prototype
- Evaluate prototype, plan, implement final system with all DCS components (students can help here)
- Increase GRID effort at FSU. One scientist and one grad student joining the effort in Aug. 04